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ABSTRACT
is book conveys the fundamentals of Linked Lexical Knowledge Bases (LLKB) and sheds light
on their different aspects from various perspectives, focusing on their construction and use in
natural language processing (NLP). It characterizes a wide range of both expert-based and col-
laboratively constructed lexical knowledge bases. Only basic familiarity with NLP is required and
this book has been written for both students and researchers in NLP and related fields who are
interested in knowledge-based approaches to language analysis and their applications.

Lexical Knowledge Bases (LKBs) are indispensable in many areas of natural language pro-
cessing, as they encode human knowledge of language in machine readable form, and as such,
they are required as a reference when machines attempt to interpret natural language in accor-
dance with human perception. In recent years, numerous research efforts have led to the insight
that to make the best use of available knowledge, the orchestrated exploitation of different LKBs
is necessary. is allows us to not only extend the range of covered words and senses, but also gives
us the opportunity to obtain a richer knowledge representation when a particular meaning of a
word is covered in more than one resource. Examples where such an orchestrated usage of LKBs
proved beneficial include word sense disambiguation, semantic role labeling, semantic parsing,
and text classification.

is book presents different kinds of automatic, manual, and collaborative linkings between
LKBs. A special chapter is devoted to the linking algorithms employing text-based, graph-based,
and joint modeling methods. Following this, it presents a set of higher-level NLP tasks and al-
gorithms, effectively utilizing the knowledge in LLKBs. Among them, you will find advanced
methods, e.g., distant supervision, or continuous vector space models of knowledge bases (KB),
that have become widely used at the time of this book’s writing. Finally, multilingual applica-
tions of LLKB’s, such as cross-lingual semantic relatedness and computer-aided translation are
discussed, as well as tools and interfaces for exploring LLKBs, followed by conclusions and future
research directions.

KEYWORDS
lexical knowledge bases, linked lexical knowledge bases, sense alignment, word sense
disambiguation, graph-based methods, text similarity, distant supervision, automatic
knowledge base construction, continuous vector space models, multilingual applica-
tions
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Foreword
Lexical semantic knowledge is vital for most tasks in natural language processing (NLP).

Such knowledge has been captured through two main approaches. e first is the knowledge-
based approach, in which human linguistic knowledge is encoded directly in a structured form,
resulting in various types of lexical knowledge bases. e second is the corpus-based approach, in
which lexical semantic knowledge is learned from corpora and then represented in either explicit
or implicit manners.

Historically, the knowledge-based approach preceded the corpus-based one, while the latter
has been dominating the center-stage of NLP research in the last decades. Yet, the development
and use of lexical knowledge bases (LKBs) continued to be a major thread. An illustration of this
fact may be found in the number of citations for the fundamental 1998 WordNet book [Fellbaum,
1998a], over 12,000 at the time of writing (according to Google Scholar), which somewhat ex-
ceeds the number of citations for the primary text book on statistical NLP from about the same
period [Manning and Schütze, 1999]. Despite the overwhelming success of corpus-based meth-
ods, whether supervised or unsupervised, their output may be quite noisy, particularly when it
comes to modeling fine-grained lexical knowledge such as distinct word senses or concrete lexical
semantic relationships. Human encoding, on the other hand, provides more precise knowledge
at the fine-grained level. e ongoing popular use of LKBs, and particularly of WordNet, seems
to indicate that they still provide substantial complementary information relative to corpus-based
methods (see Shwartz et al. [2015] for a concrete evaluation showing the complementary behavior
of corpus-based word embeddings and information from multiple LKBs).

While WordNet has been by far the most widely-used lexical resource, it does not pro-
vide the full spectrum of needed lexical knowledge, which brings us to the theme of the current
book. As reviewed in Chapter 2, additional lexical information has been encoded in quite a few
LKBs, either by experts or by web communities through collaborative efforts. In particular, col-
laborative resources provide the opportunity to obtain much larger and more frequently updated
resources than is possible with expert work. Knowledge resources like Wikipedia¹ or Wikidata²
include vast lexical information about individual entities and domain specific terminology across
many domains, which falls beyond the scope of WordNet. Hence, it would be ideal for NLP
technology to utilize in an integrated manner the union of information available in a multitude
of lexical resources. As an illustrating example, consider an application setting, like a question
answering scenario, which requires knowing that Deep Purple was a group of people. We may

¹https://www.wikipedia.org
²https://www.wikidata.org

https://www.wikipedia.org
https://www.wikidata.org


find in Wikipedia that it was a “band,” map this term to its right sense in WordNet and then
follow a hypernymy chain to “organization,” whose definition includes “a group of people.”

As hinted in the above example, to allow such resource integration we need effective meth-
ods for linking, or aligning, the word senses or concepts encoded in various resources. Accord-
ingly, the main technical focus of this book is about existing resource integration efforts, resource
linking algorithms, and the utility of such algorithms within disambiguation tasks. Hence, this
book would first be of high value for researchers interested in creating or linking LKBs, as well
as for developers of NLP algorithms and applications who would like to leverage linked lexical
resources. An important aspect is the development and use of linked lexical resources in multiple
languages, addressed in Chapter 7.

Looking forward, maybe the most interesting research prospect for linked lexical knowl-
edge bases is their integration with corpus-based machine learning approaches. A relatively sim-
ple form of combining the information in LKBs with corpus-based information is to use the
former, via distant supervision, to create training data for the latter (discussed in Section 6.2). A
more fundamental research direction is to create a unified knowledge representation framework,
which integrates directly the human-encoded information in LKBs with information obtained by
corpus-based methods. A promising framework for such integrated representation has emerged
recently, under the “embedding” paradigm, where dense continuous vectors are used to repre-
sent linguistic objects, as reviewed in Section 6.3. Such representations, i.e., embeddings, have
been initially created separately from corpus data—based on corpus co-occurrences, as well as
from knowledge bases—based on and leveraging their rich internal structure. Further research
suggested methods for creating unified representations, based on hybrid objective functions that
consider both corpus and knowledge base structure. While this research line is still in initial
phases, it has the potential to truly integrate corpus-based and human-encoded knowledge, and
thus unify these two research endeavors which have been pursued mostly separately in the past.
From this perspective, and assuming that human-encoded lexical knowledge can provide useful
additional information on top of corpus-based information, the current book should be useful for
any researcher who aims to advance state of the art in lexical semantics.

While considering the integration of implicit corpus-based and explicit human-encoded
information, we may notice that the joint embedding approach goes the “implicit way.” While
joint embeddings do encode information coming from both types of resources, this information
is encoded in opaque continuous vectors, which are not immediately interpretable, thus losing the
transparency of the original symbolically-encoded human knowledge. Indeed, developing meth-
ods for interpreting embedding-based representations is an actively pursued theme, but it is yet
to be seen whether such attempts will succeed to preserve the interpretability of LKB informa-
tion. Alternatively, one might imagine developing integrated corpus-based and knowledge-based
representations that would inherently involve explicit symbolic representations, even though, cur-
rently, this might be seen as wishful thinking.



Finally, one would hope that the current book, and work on new lexical representations in
general, would encourage researchers to better connect the development of knowledge resources
with generic aspects of their utility for NLP tasks. Consider for example the common use of the
lexical semantic relationships in WordNet for lexical inference. Typically, WordNet relations are
utilized in an application to infer the meaning of one word from another in order to bridge lexical
gaps, such as when different words are used in a question and in an answer passage.While this type
of inference has been applied in numerous works, surprisingly there are no well-defined methods
that indicate how to optimally exploit WordNet for lexical inference. Instead, each work applies
its own heuristics, with respect to the types of WordNet links that should be followed, the length
of link chains, the senses to be considered, etc. In this state of affairs, it is hard for LKB developers
to assess which components of the knowledge and representations that they create are truly useful.
Similar challenges are faced when trying to assess the utility of vector-based representations.³

Eventually, onemight expect that generic methods for utilizing and assessing lexical knowl-
edge representations would guide their development and reveal their optimal form, based on either
implicit or explicit representations, or both.

Ido Dagan
Department of Computer Science
Bar-Ilan University, Israel

³One effort to address these challenges is the ACL 2016 workshop on Evaluating Vector Space Representations for NLP,
whose mission statement is “To develop new and improved ways of measuring the quality or understanding the properties of
vector-space representations in NLP.” https://sites.google.com/site/repevalacl16/.
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Preface

MOTIVATION
Lexical Knowledge Bases (LKBs) are indispensable in many areas of natural language processing
(NLP).ey strive to encode the human knowledge of language inmachine-readable form, and as
such they are required as a reference when machines are supposed to interpret natural language in
accordance with the human perception. Examples for such tasks are word sense disambiguation
(WSD) and information retrieval (IR). e aim of WSD is to determine the correct meaning
of ambiguous words in context, and in order to formalize this task, a so-called sense inventory
is required, i.e., a resource encoding the different meanings a word can express. In IR, the goal
is to retrieve, given a user query formulating a specific information need, the documents from
a collection which fulfill this need best. Here, knowledge is also necessary to correctly interpret
short and often ambiguous queries, and to relate them to the set of documents.

Nowadays, LKBs exist in many variations. For instance, the META-SHARE repository⁴
lists over 1,000 different lexical resources, and the LRE Map⁵ contains more than 3,900 resources
which have been proposed as a knowledge source for natural language processing systems. A
main distinction, which is also made in this book, is between expert-built and collaboratively
constructed resources. While the distinction is not always clean-cut, the former are generally re-
sources which are created by a limited set of expert editors or professionals using their personal
introspection, corpus evidence, or other means to obtain the knowledge. Collaboratively con-
structed resources, on the other hand, are open for every volunteer to edit, with no or only few
restrictions such as registration for a website. Intuitively, the quality of the entries should be lower
when laypeople are involved in the creation of a resource, but it has been shown that the collabora-
tive process of correcting errors and extending articles (also known as the “wisdom of the crowds”;
Surowiecki [2005]) can lead to results of remarkable quality [Giles, 2005]. e most prominent
example is Wikipedia, the largest encyclopedia and one of the largest knowledge sources known.
Although originally not meant for that purpose, it has also become a major source of knowledge
for all kinds of NLP applications, many of which we will discuss in this book [Medelyan et al.,
2009].

Apart from the basic distinction with regard to the production process, LKBs exist in many
flavors. Some are focusing on encyclopedic knowledge (Wikipedia), others resemble language
dictionaries (Wiktionary) or aim to describe the concepts used in human language and the re-

⁴http://www.meta-share.eu
⁵http://www.resourcebook.eu

http://www.meta-share.eu
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lationships between them from a psycholinguistic (Princeton WordNet [Fellbaum, 1998a]) or a
semantic (FrameNet [Ruppenhofer et al., 2010]) perspective. Another important distinction is
between monolingual resources, i.e., those covering only one language, and multilingual ones,
which not only feature entries in different languages but usually also provide translations. How-
ever, despite the large number of existing LKBs, the growing demand for large-scale LKBs in
different languages is still not met. While Princeton WordNet has emerged as a de facto standard
for English NLP, for most languages corresponding resources are either considerably smaller or
missing altogether. For instance, the Open Multilingual Wordnet project lists only 25 wordnets in
languages other than English, and only few of them (like the Finnish or Polish versions) match
or surpass Princeton WordNet’s size [Bond and Foster, 2013]. Multilingual efforts such as Wik-
tionary or OmegaWiki provide a viable option for such cases and seem especially suitable for
smaller languages due to their open construction paradigm and low entry requirements [Ma-
tuschek et al., 2013], but there are still considerable gaps in coverage which the corresponding
language communities are struggling to fill.

A closely related problem is that, even if comprehensive resources are available for a specific
language, there usually does not exist a single resource which works best for all application sce-
narios or purposes, as different LKBs cover not only different words and senses, but sometimes
even completely different information types. For instance, the knowledge about verb classes (i.e.,
groups of verbs which share certain properties) contained in VerbNet is not covered by Word-
Net, although it might be useful depending on the task, for example to provide subcategorization
information when parsing low frequency verbs.

ese considerations have led to the insight that, to make the best possible use of the
available knowledge, the orchestrated exploitation of different LKBs is necessary. is lets us not
only extend the range of covered words and senses, but more importantly, gives us the opportunity
to obtain a richer knowledge representation when a particular meaning of a word is covered in
more than one resource.

Examples where such a joint usage of LKBs proved beneficial include WSD using aligned
WordNet and Wikipedia in BabelNet [Navigli and Ponzetto, 2012a], semantic role labeling
(SRL) using a mapping between PropBank, VerbNet and FrameNet [Palmer, 2009], and the
construction of a semantic parser using a combination of FrameNet, WordNet, and VerbNet
[Shi and Mihalcea, 2005]. ese combined resources, known as Linked Lexical Knowledge Bases
(LLKB), are the focus of this book, and we shed light on their different aspects from various
angles.

TARGETAUDIENCEANDFOCUS

is book is intended to convey a fundamental understanding of Linked Lexical Knowledge
Bases, in particular their construction and use, in the context of NLP. Our target audience are
students and researchers from NLP and related fields who are interested in knowledge-based ap-



proaches. We assume only basic familiarity with NLP methods and thus this book can be used
both for self-study and for teaching at an introductory level.

Note that the focus of this book is mostly on sense linking between general-purpose LKBs,
which are most commonly used in NLP. While we acknowledge that there are many efforts
of linking LKBs, for instance, to ontologies or domain-specific resources, we only discuss them
briefly where appropriate and provide references for readers interested in these more specific link-
ing scenarios. e same is true for the recent efforts in creating ontologies from LKBs and for-
malizing the relationships between them—while we give an introduction to this topic in Sec-
tion 1.3, we realize that this diverse area of research deserves a book of its own, which indeed has
been published recently [Chiarcos et al., 2012]. Our attention is rather on the actual algorithmic
linking process, and the benefits it brings for applications. Furthermore, we put an emphasis on
monolingual linking efforts (i.e., between resources in the same language), as the vast majority of
algorithms have covered this scenario in the past and cross-lingual approaches were mostly direct
derivatives thereof, for instance by introducing machine translation as an intermediate compo-
nent (cf. Chapter 3). Nevertheless, we recognize the increasing importance of multilingual NLP
and thus provide a dedicated chapter covering applications in this area (Chapter 6).

OUTLINE
After providing a brief description of the typographic conventions which we applied throughout
this book, we start by introducing and comparatively analyzing a selection of LKBs which have
been widely used in NLP (Chapter 1). Our description of these LKBs provides a foundation
for the main part of this book, where their integration into LLKBs is considered from various
different angles. We include expert-built LKBs, such as WordNet, as well as collaboratively con-
structed resources, such as Wikipedia and Wiktionary, and also cover established standards and
representation formats which are relevant in this context.

en, in Chapter 2, we give a more formal definition of LLKBs, and also of word sense
linking, which is crucial for combining different resources semantically, and thus is of utmost im-
portance. We go on by describing various LLKBs which have been suggested, putting a focus on
current large-scale projects which dominate the field, but also considering smaller, more special-
ized initiatives which have yielded important insights and paved the way for large-scale resource
integration.

In Chapter 3, we approach the core issue of automatic word sense linking. While the notion
of similar or even equivalent word senses in different resources is intuitively understandable and
often (but now always) quite easily grasped by humans, it poses a complex challenge for automatic
processing due to word ambiguities, different sense granularities and information types [Navigli,
2006]. First, to contextualize the challenge, we describe some related tasks in NLP and other
fields, and outline how word sense linking relates to them. en, we discuss in detail different
ways to automatically create sense links between LKBs, based on textual descriptions of senses
(i.e., glosses), the structure of the resources, or a combination thereof. e broader context of



LLKBs lies of course not in the mere linking of resources for its own sake, but in the potential it
holds for NLP applications.

us, in the following chapters, we present a selection of methods and applications where
the use of LLKBs leads to particular benefits for NLP. In Chapter 4, we describe how the disam-
biguation of textual units benefits from the richer structure and combined knowledge, and also
how the clustering of fine-grained word senses by exploiting 1:n links improves WSD accuracy.
Building on that, we present more advanced disambiguation techniques in Chapter 5, including
a discussion of using LLKBs for distant supervision and in neural vector space models, which
are two recent and especially promising topics in machine learning for NLP. In Chapter 6 we
briefly present multilingual applications, and computer-aided translation in particular, and show
how they benefit from linked multilingual resources. Finally, in Chapter 7, we supplement our
considerations of LLKB applications by discussing the enabling technologies, i.e., how LLKBs
can be accessed via user interfaces and application programming interfaces. Based on the discus-
sion of access paths for single resources, we describe how interfaces for current complex linked
resources have evolved to cater to the needs of researchers and end users.

Chapter 8 concludes this book and points out directions for future work.

TYPOGRAPHICCONVENTIONS
• Newly introduced terms and example lemmas are typed in italics.

• Synsets (groups of synonymous words) are enclosed by curly brackets, e.g., {car, automobile}.

• Concepts are typed in small caps, e.g.,     .

• Relations between senses are written as pairs in parentheses, e.g., (car, vehicle).

• Classes of the Lexical Markup Framework (LMF) standard are printed in a monospace font
starting with an upper case letter (e.g., LexicalEntry).

• LMF data categories are printed in a monospace font starting with a lower case letter (e.g.,
partOfSpeech).

We acknowledge support by the Volkswagen Foundation as part of the Lichtenberg-
Professorship Program under grant No. I/82806, by the German Institute for Educational Re-
search (DIPF), and by the German Research Foundation under grant No. GU 798/17-1. We also
thank our colleagues and students for their contributions to this book.

Iryna Gurevych, Judith Eckle-Kohler, and Michael Matuschek
July 2016



C H A P T E R 1

Lexical Knowledge Bases
In this chapter we give an overview of different types of lexical knowledge bases that are used
in natural language processing (NLP). We cover widely known expert-built Lexical Knowledge
Bases (LKBs), and also collaborative LKBs, i.e., those created by a large community of layman
collaborators. First we define our terminology, then we give a broad overview of various kinds of
LKBs that play an important role in NLP. For particular resource-specific details, we refer the
reader to the respective reference publications.

Definition Lexical Knowledge Base: Lexical knowledge bases (LKBs) are digital knowledge
bases that provide lexical information on words (including multi-word expressions) of a particu-
lar language.¹ By word, we mean word form, or more specifically, the canonical base word form
which is called lemma. For example, write is the lemma of wrote. Most LKBs provide lexical in-
formation for lemmas. A lexeme is a word in combination with a part of speech (POS), such as
noun, verb or adjective. e majority of LKBs specify the part of speech of the lemmas listed, i.e.,
provide lexical information on lexemes.

e pairings of lemma and meaning are called word senses or just senses. We use the terms
meaning and concept synonymously in this book to refer to the possibly language-independent part
of a sense. Each sense is typically identified by a unique sense identifier. For example, there are
two meanings of the verb write which give rise to two different senses:² (write, “to communicate
with someone in writing”) and (write, “to produce a literary work”). Accordingly, a LKB might
use identifiers, such as write01 and write02 to distinguish between the former and the latter
sense. e set of all senses listed in a LKB is called its sense inventory.

Depending on their particular focus, LKBs can contain a variety of lexical information,
including morphological, phonetic, syntactic, semantic, and pragmatic information. is book
focuses on LKBs that provide lexical information on the word sense level, i.e., information that
is sensitive to the meaning of a word and is therefore attached to a pairing of lemma and mean-
ing rather than to the lemma itself. Not included in our definition are LKBs that only provide
morphological information about the inflectional and derivational properties of words.

e following list provides an overview of the main lexical information types distinguished
at the level of word senses.

¹It is important to note that LKBs provide lexical information on word types rather than word tokens.
²It should be noted that in our example, the meaning is defined in natural language. Alternatively, the meaning of a word can
be defined more formally using, e.g., first-order logic.



2 1. LEXICALKNOWLEDGEBASES

• Sense definition—A definition of the sense in natural language (also called gloss) meant
for human interpretation; for example, “to communicate with someone in writing” is a sense
definition for the sense write01 given above.

• Sense examples—Example sentences which illustrate the sense in context; for example, He
wrote her an email. is a sense example of the sense write01.

• Sense relations—Lexical-semantic relations to other senses. We list the most salient ones.

– Synonymy connects senses which are lexically different but share the same meaning.
Synonymy is reflexive, symmetrical, and transitive. For example, the verbs change and
modify are synonyms³ as they share the meaning “cause to change.”
Some resources such as WordNet subsume synonymous senses into synsets. However,
for the linking algorithms presented in this book, we will usually not distinguish be-
tween sense and synset, as formost discussions and experiments in this particular context
they can be used interchangeably.

– Antonymy is a relation in which the source and target sense have opposite meanings
(e.g., tall and small).

– Hyponymy denotes a semantic relation where the target sense has amore specificmean-
ing than the source sense (e.g., from limb to arm).

– Hypernymy is the inverse relation of hyponymy and thus denotes a semantic relation
in which the target sense has a more general meaning than the source sense.

• Syntactic behavior—Lexical-syntactic properties, such as the valency of verbs, i.e., the
number and type of syntactic arguments a verb takes; for example, the verb change (“cause
to change”) can take a noun phrase subject and a noun phrase object as syntactic arguments,
as in: SheŒsubject� changed the rulesŒobject�.
In LKBs, valency is represented by subcategorization frames (short: subcat frames). ey
specify syntactic arguments of verbs, but also of other predicate-like lexemes that can take
syntactic arguments, e.g., nouns able to take a that-clause (announcement, fact) or adjectives
taking a prepositional argument (proud of, happy about). For syntactic arguments, subcat
frames typically specify the syntactic category (e.g., noun phrase, verb phrase) and grammat-
ical function (e.g., subject, object).

• Predicate argument structure information—For predicate-like words, such as verbs, this
refers to a definition of the semantic predicate and information on the semantic arguments,
including:

– their semantic role according to an inventory of semantic roles given in the context of a
particular linguistic theory. ere is no standard inventory of semantic roles, i.e., there

³For brevity, we might use lemmas to denote senses.
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are linguistic theories assuming small sets of about 40 roles, and others specifying very
large sets of several hundred roles. Examples of typical semantic roles are Agent or
Patient; and

– selectional preference information, which specifies the preferred semantic category of an
argument, e.g., whether it is a human or an artifact.
For example, the sense change (“cause to change”) corresponds to a semantic pred-
icate which can be described in natural language as “an Agent causes an Entity to
change;” Agent and Entity are semantic roles of this predicate: SheŒAgent� changed
the rulesŒEntity�; the preferred semantic category of Agent is human.

• Related forms—Word forms that are morphologically related, such as compounds or verbs
derived from nouns; for example, the verb buy (“purchase”) is derivationally related to the
noun buy, while on the other hand buy (“accept as true” e.g., I can’t buy this story) is not
derivationally related to the noun buy.

• Equivalents—Translations of the sense in other languages; for example, kaufen is the Ger-
man translation of buy (“purchase”), while abkaufen is theGerman translation of buy (“accept
as true”)

• Sense links—Mappings of senses to equivalent senses in other LKBs; for example, the sense
change (Cause_change) in FrameNet can be linked to the equivalent sense change (“cause to
change”) in WordNet.

ere are different ways to organize a LKB, for example, by grouping synonymous senses,
or by grouping senses with the same lemma. e latter organization is the traditional head-word
based organization used in dictionaries [Atkins and Rundell, 2008] where a LKB consists of
lexical entries which group senses under a common headword (the lemma).

ere is a large number of so-called Machine-readable Dictionaries (MRD), mostly digi-
tized versions of traditional print dictionaries [Lew, 2011, Soanes and Stevenson, 2003], but also
some MRDs are only available in digitized form, such as DANTE [Kilgarriff, 2010] or DWDS⁴
for German [Klein and Geyken, 2010]. We will not include them in our overview for the fol-
lowing reasons: MRDs have traditionally been built by lexicographers and are targeted toward
human use, rather than toward use by automatic processing components in NLP. While MRDs
provide information useful in NLP, such as sense definitions, sense examples, as well as grammat-
ical information (e.g., about syntactic behavior), the representation of this information in MRDs
usually lacks a strict, formal structure, and thus the information usually suffers from ambiguities.
Although such ambiguities can easily be resolved by humans, they are a source of noise when the
dictionary entries are processed fully automatically.

Our definition of LKBs also covers domain-specific terminology resources (e.g., the Uni-
fiedMedical Language System (UMLS) metathesaurus of medical terms [Bodenreider, 2004]) that
⁴www.dwds.de

www.dwds.de
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provide domain-specific terms and sense relations between them. However, we do not include
these domain-specific resources in our overview, because we used general language LKBs to de-
velop and evaluate the linking algorithms presented in Chapter 3.

1.1 EXPERT-BUILTLEXICALKNOWLEDGEBASES
Expert-built LKBs, in our definition of this term, are resources which are designed, created and
edited by a group of designated experts, e.g., (computational) lexicographers, (computational)
linguists, or psycho-linguists. While it is possible that there is influence on the editorial process
from the outside (e.g., via suggestions provided by users or readers), there is usually no direct
means of public participation. is form of resource creation has been predominant since the
earliest days of lexicography (or, more broadly, creation of language resources), and while the
reliance on expert knowledge produces high quality resources, an obvious disadvantage are the
slow production cycles—for all of the resources discussed in this section, it usually takes months
(if not years) until a new version is published, while at the same time most of the information
remains unchanged. is is due to the extensive effort needed for the creation of a resource of
considerable size, in most cases provided by a very small group of people. Nevertheless, these
resources play a major role in NLP. One reason is that up until recent years there were no real
alternatives available, and some of these LKBs also cover aspects of language which are rather
specific and not easily accessible for layman editors. We will present the most pertinent examples
in this section.

1.1.1 WORDNETS
Wordnets define senses primarily by their relations to other senses, most notably the synonymy
relation that is used to group synonymous senses into so-called synsets. Accordingly, synsets are
the main organizational units in wordnets. In addition to synonymy, wordnets provide a large
variety of additional sense relations. Most of the sense relations are defined on the synset level,
i.e., between synsets, such as hypernymy or meronymy. Other sense relations, such as antonymy,
are defined between individual senses, rather than between synsets. For example, while evil and
unworthy are synonymous (“morally reprehensible” according to WordNet), their antonyms are
different; good is the antonym of evil and worthy is the antonym of unworthy.

e Princeton WordNet for English [Fellbaum, 1998a] was the first such wordnet. It be-
came the most popular wordnet and the most widely used LKB today. e creation of the Prince-
ton WordNet is psycholinguisticially motivated, i.e., it aims to represent real-world concepts and
relations between them as they are commonly perceived. Version 3.0 contains 117,659 synsets.
Apart from its richness in sense relations, WordNet also contains coarse information about the
syntactic behavior of verbs in the form of sentence frames (e.g., Somebody –_s something).

ere are various works based on the Princeton WordNet, such as the eXtended Word-
Net [Mihalcea and Moldovan, 2001a], where all open class words in the sense definitions have
been annotated with their WordNet sense to capture further relations between senses, WordNet
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Domains [Bentivogli et al., 2004] which includes domain labels for senses, or SentiWordNet
[Baccianella et al., 2010] which assigns sentiment scores to each synset of WordNet.

Wordnets in Other Languages e Princeton WordNet for English inspired the creation of
wordnets in many other languages worldwide and many of them also provide a linking of their
senses to the Princeton WordNet. Examples include the Italian wordnet [Toral et al., 2010a],
the Japanese wordnet [Isahara et al.], or the German wordnet GermaNet [Hamp and Feldweg,
1997].⁵

Often, wordnets in other languages have particular characteristics that distinguish them
from the Princeton WordNet. GermaNet, for example, containing around 70,000 synsets in ver-
sion 7.0, originally contained very few sense definitions, but unlike most other wordnets, provides
detailed information on the syntactic behavior of verbs. For each verb sense, it lists possible subcat
frames, distinguishing more than 200 different types.

It is important to point out, however, that in general, the Princeton WordNet provides
richer information than the other wordnets. For example, it includes not only derivational mor-
phological information, but also inflectional morphology analysis within its associated tools. It
also provides an ordering of the senses based on the frequency information from the sense-
annotated SemCor corpus—which is very useful for word sense disambiguation as many systems
using WordNet rely on the sense ordering; see also examples in Chapter 4.

Information Types e lexical information types prevailing in wordnets can be summarized as
follows.

• Sense definition—Wordnets provide sense definitions at the synset level, i.e., all senses in
a synset share the same sense definition.

• Sense examples—ese are provided for individual senses.

• Sense relations—Most sense relations in wordnets are given at the synset level, i.e., all
senses in a synset participate in such a relation.

– A special case in wordnets is synonymy, because it is represented via synsets, rather
than via relations between senses.

– Most other sense relations are given on the synset level, e.g., hyponymy.
– Few sense relations are defined between senses, e.g., antonymy, which does not always

generalize to all members of a synset.

• Syntactic behavior—e degree of detail regarding the syntactic behavior varies from
wordnet to wordnet. While the Princeton WordNet only distinguishes between few sub-
cat frames, the German wordnet GermaNet distinguishes between about 200 very detailed
subcat frames.

⁵A comprehensive overview is provided by the global wordnet association under http://globalwordnet.org/wordnets-
in-the-world/.

http://globalwordnet.org/wordnets-in-the-world/
http://globalwordnet.org/wordnets-in-the-world/
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• Related forms—e Princeton WordNet is rich in information about senses that are related
via morphological derivation. Not all wordnets provide this information type.

1.1.2 FRAMENETS
LKBs modeled according to the theory of frame semantics [Fillmore, 1982] focus on word senses
that evoke certain scenes or situations, so-called frames which are schematic representations of
these. For instance, the “Killing” frame specifies a scene where “A Killer or Cause causes the death
of the Victim.” It can be evoked by verbs such as assassinate, behead, terminate or nouns such as
liquidation or massacre.

e participants of these scenes (e.g., “Killer” and “Victim” in the “Killing” frame example),
as well as other important elements (e.g., “Instrument” as “e device used by the Killer to bring
about the death of the Victim” or “Place” as “e location where the death took place”) constitute
the semantic roles of the frame (called frame elements in frame semantics), and are typically
realized in a sentence along with the frame-evoking element, as in: SomeoneŒKiller� tried to KILL
himŒVictim� with a parcel bombŒInstrument�.

e inventory of semantic roles used in FrameNet is very large and subject to further ex-
tension as FrameNet grows. Many semantic roles have frame-specific names, such as the “Killer”
semantic role defined in the “Killing” frame.

Frames are the main organizational unit in framenets: they contain senses (represented
by their lemma) that evoke the same frame. e majority of the frame-evoking words are verbs
and other predicate-like lexemes: they can naturally be represented by frames, since predicates
take arguments which can be characterized both syntactically (e.g., subject, direct object) and
semantically via their semantic role.

ere are semantic relations between frames (e.g., the “Is_Causative_of ” relation between
“Killing” and “Death” or the “Precedes” relation between “Being_born” and “Death” or “Dying”),
and also between frame elements.

e English FrameNet [Baker et al., 1998, Ruppenhofer et al., 2010] was the first frame-
semantic LKB and it is themost well-known one. Version 1.6 of FrameNet contains 1,205 frames.
In FrameNet, senses are called lexical units. FrameNet does not provide explicit information
about the syntactic behavior of word senses. However, the sense examples are annotated with
syntactic information (FrameNet annotation sets) and from these annotations, subcat frames can
be induced.

FrameNet is particularly rich in sense examples, which are selected based on lexicographic
criteria, i.e., the sense examples are chosen to illustrate typical syntactic realizations of the frame
elements. e sense examples are enriched with annotations of the frame and its elements, and
thus provide information about the relative frequencies of the syntactic realizations of a particular
frame element. For example, for the verb kill, a noun phrase with the grammatical function object
is the most frequently used syntactic realization of the “Victim” role.



1.1. EXPERT-BUILTLEXICALKNOWLEDGEBASES 7

Framenets in Other Languages e English FrameNet has spawned the construction of
framenets in multiple other languages. For example, there are framenets for Spanish⁶ [Subirats
and Sato, 2004], Swedish⁷ [Friberg Heppin and Toporowska Gronostaj, 2012], and Japanese⁸
[Ohara, 2012]. For Danish, there is an ongoing effort to build a framenet based on a large-scale
valency LKB that is manually being extended by frame-semantic information [Bick, 2011]. For
German, there is a corpus annotated with FrameNet frames called SALSA [Burchardt et al.,
2006].

Information Types e following information types in the English FrameNet are most salient.

• Sense definition—For individual senses, FrameNet provides sense definitions, either taken
from the Concise Oxford Dictionary or created by lexicographers. Furthermore, there is a
sense definition for each frame, which is given by a textual description and shared by all
senses in a frame.

• Sense examples—FrameNet is particularly rich in sense examples which are selected based
on lexicographic criteria.

• Sense relations—FrameNet specifies sense relations on the frame level, i.e., all senses in a
frame participate in the relation.

• Predicate argument structure information—Semantic roles often have frame-specific
names and are specified via a textual description. Some frame elements are further charac-
terized via their semantic type, thus selectional preference information is provided as well.

1.1.3 VALENCYLEXICONS
Most of the early work on LKBs for NLP considered valency as a central information type, be-
cause it was essential for deep syntactic and semantic parsing with broad-coverage hand-written
grammars (e.g., Head-Driven Phrase Structure Grammar [Copestake and Flickinger], or Lexical
Functional Grammar as in the ParGram project [Sulger et al., 2013]). Valency is a lexical prop-
erty of a word to require certain syntactic arguments in order to be used in well-formed phrases
or clauses. For example, the verb assassinate requires not only a subject, but also an object: �He
assassinated. vs. He assassinated his colleague. Valency information is also included in MRDs, but
often represented ambiguously and thus is hard to process automatically. erefore, a number of
valency LKBs have been built specifically for NLP applications. ese LKBs use subcat frames
to represent valency information.

It is important to note that subcat frames are a lexical property of senses, rather than words.
Consider the following example of the two senses of see and their sense-specific subcat frames (1)

⁶http://spanishfn.org
⁷http://spraakbanken.gu.se/eng/swefn
⁸http://jfn.st.hc.keio.ac.jp

http://spanishfn.org
http://spraakbanken.gu.se/eng/swefn
http://jfn.st.hc.keio.ac.jp
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and (2): subcat frame (1) is only valid for the see—“interpret in a particular way” sense, but not
for the see—“perceive with the eyes” sense:

see—“interpret in a particular way:”
subcat frame (1): (arg1:subject(nounPhrase),arg2:prepositionalObject(asPhrase))
sense example: Some historians see his usurpation as a panic response to growing insecurity.

see—“perceive with the eyes:”
subcat frame (2): (arg1:subject(nounPhrase),arg2:object(nounPhrase))
sense example: Can you see the bird in that tree?

Subcat frames contain language-specific elements, even though some of their elements may
be valid cross-lingually. For example, there are certain properties of syntactic arguments in English
and German that correspond (both English and German are Germanic languages and hence
closely related), while other properties, mainly morphosyntactic ones, diverge [Eckle-Kohler and
Gurevych, 2012]. Examples of such divergences include the overt case marking in German (e.g.,
for the dative case) or the fact that the ing-form in English verb phrase complements is sometimes
realized as zu-infinitive in German.

According to many researchers in linguistics, different subcat frames of a lexeme are as-
sociated with different but related meanings, an analysis which is called the “multiple meaning
approach” by Hovav and Levin [2008].⁹ e multiple meaning approach gives rise to different
senses, i.e., pairs of lexeme and subcat frame. Hence, valency LKBs provide an implicit charac-
terization of senses via subcat frames, which can be considered as abstractions of sense examples.
Sense examples illustrating a lexeme in a particular subcat frame (e.g., extracted from corpora)
might be provided in addition. However, valency LKBs do not necessarily assign unique identi-
fiers to senses, or group (nearly) synonymous senses into entries (as MRDs do).

Examples of Valency Lexicons COMLEX Syntax is an English valency LKB providing de-
tailed subcat frames for about 38,000 headwords [Grishman et al., 1994]. Another well-known
valency LKB is CELEX, which covers English, as well as Dutch and German. e PAROLE
project (Preparatory Action for Linguistic Resources Organization for Language Engineering),
initiated the creation of valency LKBs in 12 European languages (Catalan, Danish, Dutch, En-
glish, Finnish, French, German, Greek, Italian, Portuguese, Spanish and Swedish), which have
all been built on the basis of corpora. However, the resulting LKBs are much smaller. For ex-
ample, the Spanish PAROLE lexicon contains syntactic information for only about 325 verbs
[Villegas and Bel, 2015].

ere are many valency LKBs in languages other than English. For German, an example
of a large-scale valency LKB is IMSLex-Subcat, a broad-coverage subcategorization lexicon for
German verbs, nouns and adjectives, covering about 10,000 verbs, 4,000 nouns, and 200 adjectives

⁹In contrast, the “single meaning approach” assumes that both subcat frames are associated with the same meaning, with this
meaning allowing two syntactic realization options [Hovav and Levin, 2008].
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[Eckle-Kohler, 1999, Fitschen, 2004]. For verbs, about 350 different subcat frames are distin-
guished. IMSLex-Subcat was semi-automatically created: the subcat frames were automatically
extracted from large newspaper corpora, and manually filtered afterward.

Information Types In summary, the following lexical information types are salient for valency
LKBs.

• Syntactic behavior—Valency LKBs provide lexical-syntactic information on predicate-like
words by specifying their syntactic behavior via subcat frames.

• Sense examples—For individual pairs of lexeme and subcat frame, sense examples might
be given as well.

1.1.4 VERBNETS
According to Levin [1993], verbs that share common syntactic argument alternation patterns
also have particular meaning components in common, thus they can be grouped into semantic
verb classes. Consider as an example verbs participating in the dative alternation, e.g., give and
sell. ese verbs can realize one of their arguments syntactically either as a noun phrase or as a
prepositional phrase with to, i.e., they can be used with two different subcat frames:

Martha gives (sells) an apple to Myrna.
Martha gives (sells) Myrna an apple.

Verbs having this alternation behavior in common can be grouped into a semantic class of verbs
sharing the particular meaning component “change of possession,” thus this shared meaning com-
ponent characterizes the semantic class.

e most well-known verb classification based on the correspondence between verb syn-
tax and verb meaning is Levin’s classification of English verbs [Levin, 1993]. Recent work on
verb semantics provides additional evidence for this correspondence of verb syntax and meaning
[Hartshorne et al., 2014, Levin, 2015].

e English VerbNet [Kipper et al., 2008] is a broad-coverage verb lexicon based on Levin’s
classification covering about 3,800 verb lemmas. VerbNet is organized in about 270 verb classes
based on syntactic alternations. Verbs with common subcat frames and syntactic alternation be-
havior that also share common semantic roles are grouped into VerbNet classes, which are hier-
archically structured to represent information about related subcat frames.

VerbNet not only includes the verbs from the original verb classification by Levin, but also
more than 50 additional verb classes [Kipper et al., 2006] automatically acquired from corpora
[Korhonen and Briscoe, 2004]. ese classes cover many verbs taking non-finite verb phrases and
subordinate clauses as complements, which were not included in Levin’s original classification.
VerbNet (version 3.1) lists 568 subcat frames specifying syntactic types and semantic roles of the
arguments, as well as selectional preferences, and syntactic and morpho-syntactic restrictions on
the arguments.
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Although it might often be hard to pin down what the shared meaning components of
VerbNet classes really are, VerbNet has successfully been used in various NLP tasks, many of
them including the subtask of mapping syntactic chunks of a sentence to semantic roles [Pradet
et al., 2014]; see also Chapter 6.1 for an example.

Verbnets in Other Languages While the importance of having a verbnet-like LKB in less-
resourced languages has been widely recognized, there have rarely been any efforts to build such
high-quality verbnets as the English one.Most previous work explored fully automatic approaches
to transfer the English VerbNet to another language, thus introducing noise. Semi-automatic ap-
proaches are also often based on translating the English VerbNet into another language.

Most importantly, many of the detailed subcat frames available for English, as well as the
syntactic alternations, cannot be carried over to other languages, since valency is largely language-
specific (e.g., [Scarton and Aluísio, 2012]). erefore, the development of high-quality verbnets
in languages other than English requires the existence of a broad-coverage valency lexicon as a
prerequisite. For this reason, valency lexicons, especially tools for their (semi-)automatic con-
struction, are still receiving considerable attention.

A recent example of a high-quality verbnet in another language is the French verbnet (cov-
ering about 2,000 verb lemmas) [Pradet et al., 2014] which has been built semi-automatically
from existing French resources (thus also including subcat frames) combined with a translation
of the English VerbNet verbs.

Information Types We summarize the main lexical information types for senses present in the
English VerbNet.

• Sense definition—Verbnets do not provide textual sense definitions. A verb sense is defined
extensionally by the set of verbs forming a VerbNet class; the verbs share common subcat
frames, as well as semantic roles and selectional preferences of their arguments.

• Sense relations—e verb classes in verbnets are organized hierarchically and the subclass
relation is therefore defined on the verb class level.

• Syntactic behavior—VerbNet lists detailed subcat frames for verb senses.

• Predicate argument structure information—In the English VerbNet, each individual verb
sense is characterized by a semi-formal semantic predicate based on the event decomposi-
tion of Moens and Steedman [1988]. Furthermore, the semantic arguments of a verb are
characterized by their semantic role and linked to their syntactic counterparts in the subcat
frame. Most semantic arguments are additionally characterized by their semantic type (i.e.,
selectional preference information).
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1.2 COLLABORATIVELYCONSTRUCTEDKNOWLEDGE
BASES

More recently, the rapid development of Web technologies and especially collaborative partic-
ipation channels (often labeled “Web 2.0”) has offered new possibilities for the construction of
language resources. e basic idea is that, instead of a small group of experts, a community of users
(“crowd”) collaboratively gathers and edits the lexical information in an open and equitable pro-
cess. e resulting knowledge is in turn also free to use, adapt and extend for everyone. is open
approach has turned out to be very promising to handle the enormous effort of building language
resources, as a large community can quickly adapt to new language phenomena like neologisms
while at the same time maintaining a high quality by continuous revision—a phenomenon which
has become known as the “wisdom of crowds” [Surowiecki, 2005]. e approach also seems to be
suitable for multilingual resources, as users speaking any language and from any culture can eas-
ily contribute. is is very helpful for minor, usually resource-poor languages where expert-built
resources are small or not available at all.

1.2.1 WIKIPEDIA
Wikipedia¹⁰ is a collaboratively constructed online encyclopedia and one of the largest freely
available knowledge sources. It has long surpassed traditional printed encyclopedias in size, while
maintaining a comparative quality [Giles, 2005]. e current English version contains around
4,700,000 articles and is by far the largest one, while there are many language editions of signifi-
cant size. Some, like the German or French editions, also contain more than 1,000,000 articles,
each of which usually describes a particular concept.

Although Wikipedia has not been designed as a sense inventory, we can interpret the pair-
ing of an article title and the concept described in the article text as a sense. is interpretation
is in accordance with the disambiguation provided in Wikipedia, either as part of the title or on
separate disambiguation pages. An example of the former are some articles for Java where its
different meanings are marked by “bracketed disambiguations” in the article title such as Java
(programming language) and Java (town). An example of the latter is the dedicated disambigua-
tion page for Java which explicitly lists all Java senses contained in Wikipedia.

Due to its focus on encyclopedic knowledge, Wikipedia almost exclusively contains nouns.
Similar as for word senses, the interpretation of Wikipedia as a LKB gives rise to the induction
of further lexical information types, such as sense relations of translations. Since the original
purpose of Wikipedia is not to serve as a LKB, this induction process might also lead to inaccurate
lexical information. For instance, the links to corresponding articles in other languages provided
for Wikipedia articles can be used to derive translations (i.e., equivalents) of an article “sense”
into other languages. An example where this leads to an inaccurate translation is the English
article Vanilla extract which links to a subsection titled Vanilleextrakt within the German article

¹⁰http://www.wikipedia.org

http://www.wikipedia.org
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Vanille (Gewürz); according to our lexical interpretation of Wikipedia, this leads to the inaccurate
German equivalent Vanille (Gewürz) for Vanilla extract.

Nevertheless, Wikipedia is commonly used as a lexical resource in computational linguistics
where it was introduced as such by Zesch et al. [2007], and has subsequently been used for knowl-
edge mining [Erdmann et al., 2009, Medelyan et al., 2009] and various other tasks [Gurevych
and Kim, 2012].

Information Types We can derive the following lexical information types from Wikipedia.
• Sense definition—While by design one article describes one particular concept, the first

paragraph of an article usually gives a concise summary of the concept, which can therefore
fulfill the role of a sense definition for NLP purposes.

• Sense examples—While usage examples are not explicitly encoded in Wikipedia, they are
also inferable by considering the Wikipedia link structure. If a term is linked within an
article, the surrounding sentence can be considered as a usage example for the target concept
of the link.

• Sense relations—Related articles, i.e., senses, are connected via hyperlinks within the arti-
cle text. However, since the type of the relation is usually missing, these hyperlinks cannot
be considered full-fledged sense relations. Nevertheless, they express a certain degree of se-
mantic relatedness. e same observation holds for the Wikipedia category structure which
links articles belonging to particular domains.

• Equivalents—e different language editions of Wikipedia are interlinked at the article
level—the article titles in other languages can thus be used as translation equivalents.

Related Projects As Wikipedia has nowadays become one of the largest and most widely used
knowledge sources, there have been numerous efforts to make it better accessible for automatic
processing. ese include projects such as YAGO [Suchanek et al., 2007], DBPedia [Bizer et al.,
2009], WikiNet [Nastase et al., 2010], MENTA [de Melo and Weikum, 2010], or DBPedia
[Bizer et al., 2009]. Most of them aim at deriving a concept network from Wikipedia (“ontolo-
gizing”) and making it available for Semantic Web applications. WikiData,¹¹—a project directly
rooted in Wikimedia—has similar goals, but within the framework given by Wikipedia. e goal
here is to provide a language-independent repository of structured world knowledge, which all
language editions can easily integrate.

ese related projects basically contain the same knowledge as Wikipedia, only in a dif-
ferent representation format (e.g., suitable for Semantic Web applications), hence we will not
discuss them further in this chapter. However, some of the Wikipedia derivatives have reached a
wide audience in different communities, including NLP (e.g., DBPedia), and have also been used
in different linking efforts, especially in the domain of ontology construction. We will describe
corresponding efforts in Chapter 2
¹¹http://www.wikidata.org

http://www.wikidata.org
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1.2.2 WIKTIONARY
Wiktionary¹² is a dictionary “side project” of Wikipedia that was created in order to better cater
for the need to represent specific lexicographic knowledge, which is not well suited for an ency-
clopedia, e.g., lexical knowledge about verbs and adjectives. Wiktionary is available in over 500
languages, and currently the English edition of Wiktionary contains almost 4,000,000 lexical en-
try pages, while many other language editions achieve a considerable size of over 100,000 entries.
Meyer and Gurevych [2012b] found that the collaborative construction approach of Wiktionary
yields language versions covering the majority of language families and regions of the world, and
that it especially covers a vast amount of domain-specific descriptions not found in wordnets for
these languages.

For each lexeme, multiple senses can be encoded, and these are usually described by glosses.
Wiktionary contains hyperlinks which lead to semantically related lexemes, such as synonyms,
hypernyms, or meronyms, and provides a variety of other information types such as etymology or
translations to other languages. However, the link targets are not disambiguated in all language
editions, e.g., in the English edition, the links merely lead to pages for the lexical entries, which is
problematic for NLP applications as we will see later on. e ambiguity of the links is due to the
fact that Wiktionary has been primarily designed to be used by humans rather than machines.
e entries are thus formatted for easy perception using appropriate font sizes and bold, italic,
or colored text styles. In contrast, for machines, data needs to be available in a structured and
unambiguous manner in order to become directly accessible. For instance, an easily accessible
data structure for machines would be a list of all translations of a given sense, and encoding the
translations by their corresponding sense identifiers in the target language LKBs would make the
representation unambiguous.

is kind of explicit and unambiguous structure does not exist in Wiktionary, but needs to
be inferred from the wiki markup.¹³ Although there are guidelines on how to properly structure
a Wiktionary entry, Wiktionary editors are permitted to choose from multiple variants or to
deviate from the standards if this can enhance the entry. is presents a major challenge for the
automatic processing of Wiktionary data. Another hurdle is the openness of Wiktionary—that
is, the possibility to perform structural changes at any time, which raises the need for constant
revision of the extraction software.

Wiktionary as a resource for NLP has been introduced by Zesch et al. [2008b], and has
been considered in many different contexts in subsequent work [Gurevych and Wolf, 2010,
Krizhanovsky, 2012, Meyer, 2013, Meyer and Gurevych, 2010, 2012b]. While much work on
Wiktionary specifically focuses on few selected language editions, the multilingual LKB Dbnary
by Sérasset and Tchechmedjiev [2014] has taken a much broader approach and derived a LKB

¹²http://www.wiktionary.org
¹³Wiki markup is an annotation language consisting of a set of special characters and keywords that can be used to mark head-
lines, bold and italic text styles, tables, hyperlinks, etc. within the article. e four equality signs in “====Translations====”
denote, for example, a small headline that usually precedes the list of a word’s translations. is markup can be used by a
software tool to identify the beginning of the translation section, which supposedly looks similar on each article page.

http://www.wiktionary.org
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from Wiktionary editions in 12 languages. A major goal of DBnary is to make Wiktionary easily
accessible for automatic processing, especially in Semantic Web applications [Sérasset, 2015].

Particularly interesting for this book are the recent efforts to ontologize Wiktionary and
transform it into a standard-compliant, machine-readable format [Meyer and Gurevych, 2012a].
ese efforts address issues which are also relevant for the construction of Linked Lexical Knowl-
edge Bases (LLKBs) we will discuss later on. We refer the interested reader to Meyer [2013] for
an in-depth survey of Wiktionary from a lexicographic perspective and as a resource for NLP.

Information Types In summary, the main information types contained in Wiktionary are as
follows.

• Sense definition—Glosses are given for the majority of senses, but due to the open editing
approach gaps or “stub” definitions are explicitly allowed. is is especially the case for
smaller language editions.

• Sense examples—Example sentences which illustrate the usage of a sense are given for a
subset of senses.

• Sense relations—As mentioned above, semantic relations are generally available, but de-
pending on the language edition, these might be ambiguously encoded. Moreover, different
language editions show a great variety of the amount of relations relative to the number of
senses. For instance, the German edition is six times more densely linked than the English
one.

• Syntactic behavior—Lexical-syntactic properties are given for a small set of senses. ese
include subcat frame labels, such as “transitive” or “intransitive.”

• Related forms—Related forms are available via links.

• Equivalents—As for Wikipedia, translations of senses to other languages are available by
links to other language editions. An interesting peculiarity of Wiktionary is that distinct
language editions may also contain entries for foreign-language words, for instance, the
English edition also contains German lexemes, complete with definitions etc. in English.
is is meant as an aid for language learners and is frequently used.

• Sense links—Many Wiktionary entries contain links to the corresponding Wikipedia page,
thus providing an easy means to supply additional knowledge about a particular concept
without overburdening Wiktionary with non-essential (i.e., encyclopedic) information.

In general, it has to be noted that the flexibility of Wiktionary enables the encoding of all
kinds of linguistic knowledge, at least in theory. In practice, the information types listed here are
those which are commonly used, and thus interesting for our subsequent considerations.
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1.2.3 OMEGAWIKI
OmegaWiki,¹⁴ like Wiktionary, is freely editable via its web frontend. e current version of
OmegaWiki contains over 46,000 concepts and lexicalizations in almost 500 languages. One
of OmegaWiki’s discriminating features, in comparison to other collaboratively constructed re-
sources, is that it is based on a fixed database structure which users have to comply with [Ma-
tuschek and Gurevych, 2011]. It was initiated in 2006 and explicitly designed with the goal of
offering structured and consistent access to lexical information, i.e., avoiding the shortcomings
of Wiktionary described above.

To this end, the creators of OmegaWiki decided to limit the degrees of freedom for con-
tributors by providing a “scaffold” of elements which interact in well-defined ways. e central
elements of OmegaWiki’s organizational structure are language-independent concepts (so-called
defined meanings) to which lexicalizations of the concepts are attached. Defined meanings can
thus be considered as multilingual synsets, comparable to resources such as WordNet (cf. Sec-
tion 1.1.1). Consequently, no specific language editions exist for OmegaWiki as they do for
Wiktionary. Rather, all multilingual information is encoded in a single resource.

As an example, defined meaning no. 5616 (representing the concept ) carries the
lexicalizations hand, main, mano, etc., and also definitions in different languages which describe
this concept, for example, “at part of the fore limb below the forearm or wrist.” e multilin-
gual synsets directly yield correct translations as these are merely different lexicalizations of the
same concept. It is also possible to have multiple lexicalizations in the same language, i.e., syn-
onyms. An interesting consequence of this design, especially for multilingual applications, is that
semantic relations are defined between concepts regardless of existing lexicalizations. Consider,
for example, the Spanish noun dedo: it is marked as hypernym of finger and toe, although there
exists no corresponding lexicalization for the defined meaning    in English. is is,
for instance, immediately helpful in translation tasks, since concepts for which no lexicalization
in the target language exists can be described or replaced by closely related concepts. Using this
kind of information is not as straightforward as in other multilingual resources like Wiktionary,
because the links are not necessarily unambiguous.

e fixed structure of OmegaWiki ensures easy extraction of the information due to the
consistency enforced by the definition of database tables and relations between them. However, it
has the drawback of limited expressiveness, for instance, the coding of grammatical properties is
only possible to a small extent. In OmegaWiki, the users are not allowed to extend this structure
and thus are tied to what has been already defined. Consequently, OmegaWiki’s lack of flexibility
and extensibility, in combination with the fact that Wiktionary was already quite popular at its
creation time, has caused the OmegaWiki community to remain rather small. While OmegaWiki
had 6,746 users at the time of writing, only 19 of them had actively been editing in the past month,
i.e., the community is considerably smaller than for Wikipedia or Wiktionary [Meyer, 2013].
Despite the above-mentioned issues, we still believe that OmegaWiki is not only interesting for

¹⁴http://www.omegawiki.org

http://www.omegawiki.org
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usage in NLP applications (and thereby for integration into LLKBs), but also as a case study, since
it exemplifies how the process of collaboratively creating a large-scale lexical-semantic resource
can be guided by means of a structural “skeleton.”

Information Types e most salient information types in OmegaWiki, i.e., those encoded in a
relevant portion of entries are as follows.

• Sensedefinitions—Glosses are provided on the concept level, usually inmultiple languages.

• Sense examples—Examples are given for individual lexicalizations, but only for a few of
them.

• Sense relations—Semantic as well as ontological relations (e.g., “Germany” borders on
“France”) are given, and these are entirely disambiguated.

• Equivalents—Translations are encoded by the multilingual synsets which group lexicaliza-
tions of a concept in different languages.

• Sense links—As for Wiktionary, mostly links to related Wikipedia articles are given to
provide more background knowledge about particular concepts.

1.3 STANDARDS
Since LKBs play an important role in many NLP tasks and are expensive to build, the capability
to exchange, reuse, and also merge them has become a major requirement. Standardization of
LKBs plays an important role in this context, because it allows to build uniform APIs, and thus
facilitates exchange and reuse, as well as integration and merging of LKBs. Moreover, applications
can easily switch between different standardized LKBs.

1.3.1 ISOLEXICALMARKUP FRAMEWORK
e ISO standard Lexical Markup Framework (LMF) [Calzolari et al., 2013, Francopoulo and
George, 2013, ISO24613, 2008] was developed to address these issues. LMF is an abstract stan-
dard, it defines a meta-model of lexical resources, covering both NLP lexicons and machine read-
able dictionaries. e standard specifies this meta-model in the Unified Modeling Language
(UML) by providing a set of UML diagrams. UML packages are used to organize the meta-
model and each diagram given in the standard corresponds to an UML package. LMF defines
a mandatory core package and a number of extension packages for different types of resources,
e.g., morphological resources or wordnets. e core package models a lexicon in the traditional
headword-based fashion, i.e., organized by lexical entries. Each lexical entry is defined as the
pairing of one to many forms and zero to many senses.

e abstract meta-model given by the LMF standard is not immediately usable as a format
for encoding (i.e., converting) an existing LKB [Tokunaga et al., 2009]. It has to be instanti-
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ated first, i.e., a full-fledged lexicon model has to be developed by choosing LMF classes and by
specifying suitable attributes for these LMF classes.

According to the standard, developing a lexicon model involves

1. selecting LMF extension packages (the usage of the core package is mandatory),

2. defining attributes for the classes in the core package and in the extension packages (as they
are not prescribed by the standard), and

3. explicating the linguistic terminology, i.e., linking the attributes and other linguistic terms
introduced (e.g., attribute values) to standardized descriptions of their meaning.

Selecting a combination of LMF classes and their relationships from the LMF core package
and from the extension packages establishes the structure of a lexicon model. While the LMF
core package models a lexicon in terms of lexical entries, the LMF extensions provide classes for
different types of lexicon organization, e.g., covering the synset-based organization of wordnets
or the semantic frame-based organization of FrameNet.

Fixing the structure of a lexicon model by choosing a set of classes contributes to the in-
teroperability of LKBs, as it determines the high-level organization of lexical knowledge in a
resource, e.g., whether synonymy is encoded by grouping senses into synsets (using the Synset
class) or by specifying sense relations (using the SenseRelation class), which connect synonymous
senses (i.e., synonyms). Defining attributes for the LMF classes and specifying the attribute val-
ues is far more challenging than choosing from a given set of classes, because the standard gives
only a few examples of attributes and leaves the specification of attributes to the user in order to
allow maximum flexibility.

Finally, the attributes and values have to be linked to a description of their meaning in
an ISO compliant Data Category Registry [ISO12620, 2009, Windhouwer and Wright, 2013].
For example, ISOcat¹⁵ was the first implementation of the ISO Data Category Registry stan-
dard [ISO12620, 2009].¹⁶ e data model defined by the Data Category Registry specifies some
mandatory information types for its entries, including a unique administrative identifier (e.g.,
partOfSpeech) and a unique and persistent identifier (PID, e.g., http://www.isocat.org/dat
cat/DC-396) which can be used in automatic processing and annotation, in order to link to the
entries. From a practical point of view, a Data Category Registry can be considered as a reposi-
tory of mostly linguistic terminology which provides human-readable descriptions of themeaning
of terms used in language resources. For instance, the meaning of many terms used for linguis-
tic annotation is given in ISOcat, such as grammaticalNumber, gender, case. Accordingly, a Data
Category Registry can be used as a glossary: users can look up the meaning of a term occurring
in a language resource by consulting its entry in the Data Category Registry.

¹⁵www.isocat.org
¹⁶ISOcat has been shut down and currently only a static dump of ISOcat is accessible at www.isocat.org. A successor of
ISOcat is the OpenSKOS-based CLARIN Concept Registry (https://openskos.meertens.knaw.nl/ccr/browser).
In addition, a relaunch of ISOcat is planned by the ISO TC37 community.

http://www.isocat.org/datcat/DC-396
http://www.isocat.org/datcat/DC-396
www.isocat.org
www.isocat.org
https://openskos.meertens.knaw.nl/ccr/browser
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Data Category Registries, such as ISOcat, play an important role in making language re-
sources semantically interoperable [Ide and Pustejovsky, 2010]. Semantically interoperable lan-
guage resources share a common definition of their linguistic vocabulary, for instance, the lin-
guistic terms used in a LKB. LKBs can be made semantically interoperable by connecting these
terms with their meaning defined externally in a Data Category Registry. Consider as an example
the LexicalEntry class of two different lexicon models A and B. Lexicon model A may have an
attribute partOfSpeech (POS), while lexicon model B may have an attribute pos. Linking both
attributes to the ISOcat entry with the meaning “A category assigned to a word based on its
grammatical and semantic properties.” (see http://www.isocat.org/datcat/DC-396) makes
the two lexicon models semantically interoperable with respect to the POS attribute. us, a hu-
man can look up the meaning of a term occurring in a lexicon model by following the link to the
ISOCat entry and consulting its description. Linking the attributes and their values in an LMF
lexicon model to ISOCat entries results in a so-called Data Category Selection. It is important
to stress that the notion of “semantic interoperability” in the context of LMF has a limited scope:
it only refers to the meaning of the linguistic vocabulary used in an LMF lexicon model—not to
the meaning of the lexemes listed in a LKB.

Instantiations of LMF Various LMF lexicon models have been developed and populated with
data from LKBs, mostly for a single type of LKB, such as wordnets [Henrich and Hinrichs,
2010, Lee et al., Soria et al., 2009, Toral et al., 2010a, Vossen et al., 2013], or machine readable
dictionaries [Attia et al., 2010, Khemakhem et al., 2013].

Considering the fact that only a fleshed-out LMF lexicon model, i.e., an instantiation of
the LMF standard, can be used for actually standardizing LKBs, it is obvious that indepen-
dently created LMF-compliant LKBs are not necessarily interoperable. is issue is addressed
by UBY-LMF [Eckle-Kohler et al., 2012, 2013], a large-scale instantiation of ISO LMF which
can be applied to the whole range of LKB types introduced in the previous sections. UBY-LMF
has been designed as a uniform format for standardizing both expert-constructed resources—
wordnets, FrameNet, VerbNet—and collaboratively constructed resources—Wikipedia, Wik-
tionary, OmegaWiki. e full UBY-LMF model consists of 39 classes and 129 attributes. UBY-
LMF provides a fine-grained instantiation of the LMF Syntax extension classes in order to
cover detailed verb subcategorization frames present, e.g., in VerbNet. UBY-LMF provides a
harmonized subcategorization frame format across two languages, English and German. is
format enables a modular specification of subcategorization frames by a number of attributes
that are uniform across English and German. All syntactic arguments are specified by the at-
tributes grammaticalFunction and syntacticCategory. A number of morphosyntactic attributes
allow a fine-grained specification of different phrase types. While most of the attribute values
are uniform across English and German, there are four morphosyntactic attributes that can take
language-specific values. Details on this uniform format for subcategorization frames in English
and German can be found in Eckle-Kohler and Gurevych [2012].

http://www.isocat.org/datcat/DC-396
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1.3.2 SEMANTICWEB STANDARDS
e Semantic Web [Berners-Lee et al., 2001] can be considered as a huge data integration plat-
form since the use of the Resource Description Framework (RDF) supports data integration and
offers a large body of tools for accessing this data. ere has been significant work toward inte-
grating LKBs using RDF and linked data principles [Chiarcos et al., 2013]. Most notably, the use
of publicly accessible unique identifiers (URIs) for information types represented in RDF allows
different and distributed LKBs to link to each other.

Many LKBs have been made available in this way (e.g., WordNet, Wikipedia [Bizer et al.,
2009], and Wiktionary). While representing LKBs in RDF makes them syntactically interop-
erable, due to the data structures given by RDF, it does not per se make them semantically in-
teroperable. Consider, for instance, existing conversions of WordNet and FrameNet [Narayanan
et al., 2003, Van Assem et al., 2006], where a simple mapping to RDF is augmented with OWL
semantics. e formats chosen for these RDF versions of WordNet and FrameNet are different,
they are specific to the underlying data models of WordNet and FrameNet—two LKBs which
have been characterized as complementary regarding their structure and lexical information types
[Baker and Fellbaum, 2009]. erefore, it is difficult to use the RDF versions of WordNet and
FrameNet as interchangeable modules in NLP applications.

In order to overcome this difficulty, the lemon lexicon model [McCrae et al., 2011, 2012a]
was proposed as a common interchange format for lexical resources on the Semantic Web. lemon
realizes a separation of lexicon and ontology layers, so that lemon lexica can be linked to existing
ontologies in the linked data cloud.¹⁷ lemon has its historical roots in LMF and thus allows easy
conversion fromLKBs standardized according to LMF. Like LMF lexiconmodels, lemon refers to
data categories in linguistic terminology repositories (such as the ISO Data Category Registry).
lemon has been used to represent various LKBs, e.g., Wiktionary [Sérasset, 2015] and several
LKBs rich both in subcategorization frames and semantic information types [Del Gratta et al.,
2015, Villegas and Bel, 2015]. It has also been used as a basis for integrating the data of the
English Wiktionary with the RDF version of WordNet [McCrae et al., 2012b].

1.4 CHAPTERCONCLUSION
is chapter set out a definition of LKB which we will use in all subsequent chapters of this book.
Building on this definition we introduced seven major “kinds” of LKBs frequently used in NLP:

• wordnets (i.e., the Princeton WordNet and its spin-offs in other languages);

• framenets (i.e., the Berkeley FrameNet and its spin-offs in other languages);

• valency lexicons;

• verbnets (i.e., the English VerbNet and its spin-offs in other languages);

¹⁷More detail of the model can be found at http://lemon-model.net

http://lemon-model.net
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• Wikipedia and Wiktionary as collaborative LKBs with editions in many languages; and

• the multilingual wordnet OmegaWiki, a collaborative LKB as well.

All these kinds of LKBs are structured and organized differently, and cover different information
types. Table 1.1 provides an overview of the major information types¹⁸ covered by the seven LKB
types.

Table 1.1: Overview of information types covered by different kinds of LKBs: wordnets (WN),
framenets (FN), valency lexicons (VL), verbnets (VN), Wikipedia (WP), Wiktionary (WKT), and
OmegaWiki (OW)

Information Type WN FN VL VN WP WKT OW

Sense De! nition x x - -

Sense Examples x x - - - x -

Sense Relations x x - -

Syntactic Behavior x - x x - x -

Predicate Argument 

Structure Information

- x - x

Related Forms x - - - -

Equivalents - - - -

Sense Links - - - - -

x x x

x x x

x x

x

x

x x

- - -

-

is overview might convey a first impression of the complexity of linking different LKBs
at the sense level.

Our concluding summary of major standards for LKBs plays a subordinate role in the con-
text of this book. We included it because many of the above-listed LKBs have been standardized,
some of them especially in the context of linking.

¹⁸By “major” we mean those information types which are attached to a substantial number of senses in a LKB.
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Linked Lexical Knowledge
Bases

In this chapter, we move closer to the core of this book: the linking of LKBs. To this end, we first
have to formally define what this linking means, and especially at what level it is taking place.

Definition Word Sense Linking: We define one instance of a Word Sense Linking (WSL), or
also Word Sense Alignment (WSA),¹ as a list of pairs of senses (or, more generally, concepts)
from two LKBs, where the members of each pair represent an equivalent meaning.

As an example for this definition, the two senses of the noun letter “e conventional
characters of the alphabet used to represent speech” and “A symbol in an alphabet, bookstave”
(taken from WordNet and Wiktionary, respectively) are clearly equivalent and should thus be
aligned. Note that our definition is not necessarily restricted to 1:1 alignments, i.e., a sense
may participate in more than one pair, so it is possible that one sense s is assigned to several
other senses t1; : : : ; tn, in case the sense distinctions have different granularities in different LKBs.

Based on this definition on the sense level, we can move on to the second definition.

Definition Linked Lexical Knowledge Base: A linked lexical knowledge base (LLKB) is a set
consisting of at least two LKBs, where for each LKB there exists a non-empty subset of its senses
participating in a word sense linking with another LKB.

Less formally, two LKBs form a LLKB if there exists at least one sense linking between
them. If more than two LKBs participate, it is not strictly necessary to have a pairwise linking
between each of them—though if this is the case, we can speak of a fully linked LLKB. It is
important to note at this point that this “full linking” only makes a statement at the resource
level, not at the sense level. Consider again the example of two LKBs which share at least one
sense linking: these can be considered a fully linked LLKB by definition, but this does by no
means imply that all of the senses are participating in the linking. As a matter of fact, due to the
different coverage of concepts in resources, it is most unlikely for a resource pair that a (correct)
sense linking can be found which encompasses all senses.

¹Note that in related work the terms sense mapping and sense matching are also used. Sense alignment should, however, not be
confused with word alignment, which takes place at the lexical level and is a preprocessing step in machine translation.



22 2. LINKEDLEXICALKNOWLEDGEBASES

In the remainder of this chapter, we will discuss different examples of LLKBs, consider-
ing the motivation for their creation, the choice of resources involved, and other noteworthy
characteristics. is chapter does not go into detail regarding algorithms for automatic linking
and methods for applying LLKBs in NLP, as these aspects will be covered at length in Chapters 3
and 4. Note that we will not describe linked LLKBs on the Semantic Web in detail. Mostly,
these are existing resources which are converted into a Semantic Web format; however, the basic
principles and algorithms used for linking (see next chapter) stay the same.

2.1 COMBININGLKBS FOR SPECIFICTASKS
In NLP, the combination of LKBs has been investigated for more than twenty years, and much
work aimed at improving the performance of particular NLP tasks. An early work by Knight and
Luk [1994] aligns WordNet to the Longman Dictionary of Contemporary English (LDOCE) in
order to provide more background knowledge for machine translation.

Jing and McKeown [1998] combine several expert-built resources for the purpose of Nat-
ural Language Generation. ey combine WordNet, Levin’s verb classes, the COMLEX syntax
dictionary, as well as the Brown Corpus in a rule-based approach.

King and Crouch [2005] combine WordNet, VerbNet and the Cyc ontology (providing
everyday common sense knowledge [Reed and Lenat, 2002]) in order to create knowledge rep-
resentations from text. eir knowledge representations cover the correspondence of syntax and
semantics made available through the combination of VerbNet on the one hand, and WordNet
and Cyc on the other hand.

Shi and Mihalcea [2005] present a semi-automatic linking algorithm for FrameNet, Verb-
Net and WordNet for improving semantic parsing. Navigli [2006] creates a linking between
WordNet and the Oxford Dictionary of English (ODE) in order to create a coarse-grained version
of WordNet for enhanced Word Sense Disambiguation (WSD). Improving WSD by the means
of richer sense representations is also the goal of Mihalcea [2007] who manually link WordNet
and Wikipedia.

For the purpose of verb classification in cognitive linguistics research, Chow and Webster
[2007] present a combination of FrameNet, WordNet and SUMO (Suggested Upper Merged
Ontology [Niles and Pease, 2001]).

With the rise of collaboratively constructed knowledge sources in recent years, and more
and more proof of their usefulness in NLP applications, different attempts have been made to
combine them with expert-built resources at a large scale. One early suggestion is the freely
available NULEX [McFate and Forbus, 2011], which integrates WordNet, VerbNet, and Wik-
tionary. It was automatically created with the purpose to enhance syntactic parsing. For this rea-
son, NULEX only covers selected information types relevant for syntactic parsing—for instance,
from Wiktionary, NULEX includes certain grammatical information types which are not covered
in the other resources.
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2.2 LARGE-SCALELLKBS

e pinnacle of the idea of combining different resources (and especially different kinds of re-
sources), and the current state-of-the-art, is to automatically create a linking between more than
two of them, in order to achieve the best possible coverage and richness of knowledge types for
a variety of different NLP tasks. In this section, we discuss the challenges of this approach and
give a more detailed comparison of the currently predominant players.

One of the main challenges for creating these large-scale linkings is the consistent match-
ing of different information types. While this can be difficult for two resources, matching three
or more of them often requires relaxed assumptions regarding the interpretation and linking as
an exact match is rarely possible—this is also the reason why, besides some rather unsuccessful
attempts [Kirschner, 2012, Matuschek, 2014], matching of several resources at once is not vi-
able, as the room for interpretation and thus the possible error propagation is unacceptable. e
more common approach is to align the resources in a pairwise fashion (which is a reasonably well-
understood problem, see the following sections), and then construct more complex alignments
based on this.

Another issue with creating a linking between several resources is the lexical coverage—in
several studies in the past, it has been confirmed that, while the overlap between two resources
can be reasonably high, the more resources are involved, the fewer lexical items lie in the inter-
section of all of them [Meyer and Gurevych, 2010, Miller and Gurevych, 2014]. Depending on
the combination of resources, it is possible that only a few thousand (or even hundred) items
are completely covered, which might not be sufficient depending on the particular application
scenario.

UBY [Gurevych et al., 2012a] is a large-scale attempt at resource integration. It combines
the English WordNet, Wiktionary, Wikipedia, FrameNet, VerbNet, German Wikipedia, Wik-
tionary, GermaNet, Openesaurus, the German valency lexicon IMSLex-Subcat, as well as
the multilingual OmegaWiki. Apart from the numerous sense linkings for a large subset of the
resources, a distinguishing feature of UBY is that it provides standardized and hence interop-
erable versions of the LKBs. e structure of UBY and its entries is determined in the Lexical
Markup Framework (LMF)-based model [Francopoulo et al., 2009] UBY-LMF which we have
introduced in the previous chapter. e data model UBY-LMF has been designed to capture all
information types available in the integrated resources, i.e., UBY can be considered the union of
all its resources. Accompanying UBY, there are also a Java-based API and a web interface avail-
able. UBY has, for instance, successfully been used in distantly supervised learning for verb sense
disambiguation [Cholakov et al., 2014].

e other popular and comprehensive approach to resource integration nowadays, which is
especially rich inmultilingual information, isBabelNet [Navigli and Ponzetto, 2012a]. As of 2015,
this resource integrates WordNet, Open Multilingual Wordnet, a French translation of WordNet
(WoNeF), VerbNet, Wikipedia, OmegaWiki, Wiktionary, factual world knowledge from Wiki-
data, Wikiquote, Microsoft Terminology, GeoNames, and ImageNet. BabelNet uses an under-
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lying data model that captures the intersection of all the integrated resources with a focus on
translation information, i.e., a BabelNet entry provides only sense definitions and translations
into multiple languages, but not subcategorization frames. Translation gaps in the integrated re-
sources have been filled using machine translation. e result is a multilingual network (created
for large parts via automated alignment, see Chapter 3) containing about 14 million entries and
covering 272 languages; it has been used for tasks such as the creation of semantic predicates
[Flati and Navigli, 2013] and semantic relatedness computation [Navigli and Ponzetto, 2012c].
It has also advanced the state-of-the-art in knowledge-based WSD for noun mentions and entity
linking [Moro et al., 2014b], and it is part of the Linguistic Linked Open Data (LLOD) cloud²
and hence is also available in a standardized format.

While UBY and BabelNet have at times been considered competitors, this assessment fails
to recognize their different (and for the most part, complementary) philosophies. Although they
both contain the same resources at the core (for instance, WordNet), BabelNet’s early develop-
ment was primarily based on the alignment of WordNet and Wikipedia, which by the very nature
of Wikipedia implied a strong focus on nouns, and especially named entities. Only in its later de-
velopment the focus was shifted more toward other parts of speech. UBY, on the other hand, was
from the start designed to also cover verb information, or more specifically, syntactic information
and predicate argument structure information, which is contained in resources such as VerbNet
or FrameNet.

e most important difference is that UBY aims at modeling the different resources sep-
arately, but completely, so that UBY can be used as a wholesale replacement for each of the
contained resources,³ with the additional benefit of alignments between the resources if they are
required. BabelNet, on the other hand, bakes only selected information types⁴ into so-called Babel
Synsets. is approach makes accessing and processing of the lexical knowledge more convenient,
but blurs the lines between the integrated LKBs. Moreover, BabelNet also enriches the original
resources by adding automatically created translations for concepts which are not lexicalized in
a particular language. While this provides a great boost of coverage for multilingual applications
(for instance, the one we present later on in Section 6), it has to be kept in mind that automatic
inference of information is always prone to a certain degree of error. BabelNet currently does not
include provenance information for the translations, although this information could be preserved
in principle.⁵ Consequently, a user has no way of distinguishing automatically created translations
and translations inferred from the interlingual links in Wikipedia.

In summary, both resources have quite different characteristics, so that a usage of one or
the other might be preferred depending on the particular application scenario. Considering their
open and well-documented structure, it might also be a viable option to create a linking between

²http://linguistics.okfn.org/resources/llod/
³e access to single resources is supported by the API via a single parameter.
⁴Pronunciations from Wiktionary, for instance, are not included.
⁵See https://www.w3.org/community/bpmlod/wiki/Converting_BabelNet_as_Linguistic_Linked_Data accessed
on March 30, 2016.

http://linguistics.okfn.org/resources/llod/
https://www.w3.org/community/bpmlod/wiki/Converting_BabelNet_as_Linguistic_Linked_Data
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them (especially considering the large overlap in covered resources and hence concepts). is way,
the extensive lexicographic knowledge contained within them can be leveraged.

2.3 AUTOMATICLINKING INVOLVINGWORDNETS
e automatic linking of LKBs has been particularly well studied for wordnets, as this is the LKB
type predominantly used in NLP. In this section, we discuss selected examples of such approaches
involving the Princeton WordNet and some of its spin-offs in other languages.

Pairwise Linking of Wordnets and Other LKB Types Many works linked wordnets with an-
other LKB type, and thus provided the research community with a better understanding of the
automatic linking task.

An early proof-of-concept approach to automatically linking the Princeton WordNet to
other LKBs was presented by Kwong [1998]. She linked LDOCE to Roget’s esaurus via Word-
Net using a notion of similarity between senses based on gloss overlap.

For the alignment of WordNet and domain-thesauri, an approach based on gloss overlap is
not applicable, since thesauri usually do not provide glosses. Alternatively, the organization of the-
sauri into domain concepts (groups of semantically related senses) and their structure (taxonomic
relations between domain concepts) can be leveraged for an alignment to WordNet. Burgun and
Bodenreider [2001] aligned WordNet to theUnifiedMedical Language System (UMLS) thesaurus
using the “term” overlap of WordNet synsets and UMLS domain concepts. Toral et al. [2010b]
linked a domain thesaurus to WordNet by exploiting the structural similarity of the semantic
networks induced by the sense relations provided by the two resources, i.e., the relations between
synsets in WordNet and the taxonomic relations in the domain thesaurus.

ere are numerous approaches which automatically align WordNet to Wikipedia. A naive
approach was taken in the YAGO (Yet Another Great Ontology) [Suchanek et al., 2007, 2008]
project. e goal is to build a general knowledge repository for different purposes, and the in-
cluded WordNet-Wikipedia linking was created using the most frequent sense (MFS) infor-
mation contained in WordNet. However, the majority of works used some notion of similarity
between senses—we will explain the different similarity measures and corresponding algorithms
in Chapter 3. Examples include the work by Ruiz-Casado et al. [2005] and De Melo and Weikum
[2010] who align WordNet to full Wikipedia articles; the resulting LLKBs WordNet++ and Uni-
versal WordNet (UWN) have been used for a considerable number of NLP applications.

e alignment of wordnets with another LKB type has been much less investigated for
languages other than English. An interesting LKB type in this context is Wiktionary due to the
broad range of information types it provides (depending, of course on the size and coverage of the
Wiktionary edition in a particular language). For example, Henrich et al. [2011] link the German
wordnet GermaNet and Wiktionary, with the eventual goal of enriching GermaNet with more
glosses, as only a fraction of senses originally had a textual description. Bond and Foster [2013]
aim to enrich wordnets in many under-resourced languages by aligning them to Wiktionary in
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the course of the Open Multilingual Wordnet project. Both Henrich et al. [2011] and Bond and
Foster [2013] determine the similarity of senses based on the overlap between bags-of-words
constructed from glosses and semantically related words.

A large body of work has been dedicated to linkingWordNet and FrameNet in order to bet-
ter capture the peculiarities of verb usage. For verbs, the information types provided by WordNet
and FrameNet are quite different and can be considered as complementary (also see Chapter 1).
As it has long been established that verbs are the most challenging part of speech for tasks such
as WSD, it makes sense to tap all available knowledge sources to handle them more effectively.
Several different approaches have been considered for solving this task, but most are based on
some variation of gloss similarity measures [Baker and Fellbaum, 2009, Ferrandez et al., 2010,
Johansson and Nugues, 2007, Laparra and Rigau, 2009, Laparra et al., 2010]. One of the most
sophisticated attempts to create such a linking by Tonelli and Pighin [2009] employs a machine
learning framework to reach higher precision.

Linking Wordnets to Each Other While the focus of linking wordnets to other kinds of re-
sources is to expand the coverage of lexical information types in one particular language, another
important direction is to create links between wordnets in different languages. is is obviously
useful for tasks such as cross-lingual information retrieval or machine translation, as the intention
is to obtain LLKBs which provide high-quality expert knowledge about the respective languages.

One of the earliest attempts to bring together separate efforts to create wordnets across Eu-
rope was EuroWordNet [Jansen, 2004, Vossen, 1998]. BalkaNet [Stamou et al., 2002] is a closely
associated project which aimed at adding wordnets for Bulgarian, Greek, Romanian, Serbian,
Turkish, and Czech. e Meaning Multilingual Central Repository (MCR) [Atserias et al., 2004]
does the same for Spanish, Catalan, Basque and Galician. While the EuroWordNet project has
long ended, many insights and developments made in this project are still relevant, for instance
the so-called Interlingual Indexes (ILI) which connect concepts in different languages. e Mul-
tiWordNet [Pianta et al., 2002] project has very similar goals, but a different approach—here, the
idea is not to align existing separate wordnets, but rather to use the English WordNet (which
is the most elaborate among them) as “blueprint” for creating wordnets in other languages. A
similar endeavor was undertaken in the Universal WordNet project [De Melo and Weikum, 2008,
2009, 2010], which (as mentioned above) also includes links to Wikipedia.

2.4 MANUALANDCOLLABORATIVE LINKING
To cope with the task of fully linking two resources, most work has been focused on doing this
automatically, or at least semi-automatically to reduce the manual work load. While we have
discussed many of these efforts in this chapter, the most straightforward way to create linked
resources is still to identify equivalent senses manually. To guarantee a high level of quality, two
basic options exist: either the linking is performed by a closed group of experts, or by a large group
of collaborators in an open process.
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One of the most prominent projects for expert-based linking of resources is SemLink [Bo-
nial et al., 2013, Palmer, 2009]. It includes a manual linking between the verb senses of PropBank
and VerbNet classes, and between VerbNet classes and FrameNet frames. In addition, there are
verb sense-specific mappings between the semantic roles of VerbNet, FrameNet, and PropBank.

e collaborative approach to linking is used in Wiktionary, OmegaWiki, and Wikipedia.
However, this is not a systematic process—the main focus of each community is clearly to im-
prove and extend the content of the respective resource. us, the linking is usually considered
optional “icing” to provide additional background information on a particular concept, and not
essential information. For instance, for OmegaWiki only a few thousand links to Wikipedia exist
[Matuschek, 2014], which is still far from a complete alignment. It would, however, be no big
issue to complete these links in collaborative resources considering the size of the workforce—
ironically, the small set of editors is exactly the perennial challenge for the linking of expert-built
resources, even more so as usually a linking is desired which is as complete as possible. One of the
earliest projects trying to achieve this is Cyc [Reed and Lenat, 2002], an ontology project estab-
lished in the 1980s with the goal of representing everyday common sense knowledge as accurately
as possible, and which is comparable to YAGO. Hence, several smaller and specialized ontologies
are included, but also general-language resources like WordNet. It is still under development, and
apart from the commercial version there is also a freely available one.

Recently, manual effort is mostly used for creating evaluation or training datasets, while
most of the actual linking work is done automatically using one of the more and more sophisti-
cated algorithms for sense linking. We will discuss these linking algorithms in the next chapter.

2.5 CHAPTERCONCLUSION
We gave a high-level and broad overview of previous work on constructing LLKBs and organized
it in a way that highlights a number of fundamental aspects:

• automatic vs. manual linking of LKBs: linking LKBs manually at scale requires a collabo-
rative approach to linking rather than an expert-based one;

• intrinsic vs. task-based evaluation of the constructed LLKBs:

– linking of LKBs with the primary goal of enhancing a particular NLP task: while this
line of work always extrinsically evaluated the added value of combining LKBs, the
linking task itself has often been greatly simplified: often, only selected information
types relevant for the task at hand have been included in the combined LLKB;

– linking of wordnets to other LKB types with the primary goal to study the linking task
itself: while this line of work provided insights into the linking task, it often did not
extrinsically evaluate the benefit of combining LKBs on an NLP task;
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• the complementary nature of the LLKBs BabelNet and UBY: we pointed out that BabelNet
and UBY, two large-scale approaches to linking LKBs, are complementary in many ways,
which makes each of them suitable for different NLP tasks.

In conclusion, the survey in this chapter should provide a big picture of previous research onLLKB
construction—in order to enable the interested reader to adequately position current research on
this topic.
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Linking Algorithms
In the previous chapter we have introduced the notion of word sense linking (WSL) as the align-
ment of senses (or concepts) from different lexical-semantic resources, and we also presented sev-
eral different projects which link resources at the word sense level for different purposes. While
we also briefly covered manual construction approaches, we established that the most interesting
ones in terms of flexibility and scalability are those which employ (semi-)automatic construction
methods. In this chapter, we want to dive deeper into this topic and present different algorithmic
approaches for identifying equivalent concepts across resources.

However, to better define the scope of this task and its peculiarities, we first want to take
a step back and examine related problems from other fields. is will help in making it more
clear what special problems arise when matching LKBs as opposed to, for instance, ontology
matching or semantic relatedness calculation, and in what ways the corresponding algorithmic
approaches can consequently be discriminated from related efforts. After this, we present the
main evaluation metrics for WSL to help contextualize the approaches, and then discuss, in three
distinct sections, three different angles from which this problem has been addressed: approaches
based on the similarity of glosses of word senses, approaches based on the graph structure of LKBs,
and a combination of both. As discussed in Chapter 1, glosses and semantic relations (inducing
a structure) are the two ubiquitous ways to describe senses in different LKBs.

3.1 INFORMATION INTEGRATION

3.1.1 ONTOLOGYMATCHING
An ontology is formally defined as a specification of a conceptualization [Euzenat and Shvaiko,
2013]. In other words, it provides the vocabulary for describing a particular domain, and speci-
fies the meaning of the terms used in this vocabulary. As a rule, well-defined relations between
concepts such as subclass exist which add structure to the ontology and at the same time define
the properties of its instantiations. For example, car is a subclass of vehicle, so if a vehicle can be
used for transportation a car can trivially be used for this purpose as well. Such reasoning over
ontologies is usually one of the desired properties, and one of the main reasons for applying them
to real-world data analysis problems. Many LKBs can also be interpreted as ontologies as they
contain corresponding relations between concepts [Veale et al., 2004]. However, unlike most on-
tologies, the LKBs we consider are not limited to a particular domain as they aim to encompass
the entirety of real-world concepts and perceptions expressible via written language. Examples



30 3. LINKINGALGORITHMS

for such “language ontologies” are OmegaWiki (Section 1.2.3), OntoWiktionary [Meyer, 2013]
or some of the resources contained in the Linguistic Linked Open Data Cloud.

e matching of ontologies is relevant if different conceptualizations need to be used in
conjunction or merged. For instance if a company is merged with another one the internally used
ontologies for the goods they produce must be harmonized. Hence, many different approaches
have been developed, which are generally comparable to the ones suggested for WSL and can for
most part be sorted into one of two broad categories.

• Terminological approaches are based on the lexical comparison of ontological entities and
their descriptions [Cohen et al., 2003, Yatskevich and Giunchiglia, 2004].

• Structural approaches utilize the relationships between entities and try to find well-
matching substructures in both ontologies [Giunchiglia et al., 2004, Maedche and Staab,
2002].

Hybrid approaches combining both directions seem to show the best results [Le et al.,
2004]. e so-called extensional approaches present a vastly different paradigm which cannot
straightforwardly be applied to WSL [Dhamankar et al., 2004, Doan et al., 2003]. ese com-
pare the actual instantiations of an ontology to identify entities which are similar and align the
ontologies based on this. For example, it would be possible to look up the instances which are
categorized as  by one ontology and see if their attributes (like number of legs, size etc.)
match the instances in the other ontologies. is is helpful in case of ontologies with very different
descriptions or structures. Such an approach is not applicable to WSL, as there usually is no way
to find out which real-world entities are covered by a specific word sense—e.g., it is not possible
to look at all existing (or even hypothetic) cats and see if they are covered by a sense definition in
Wiktionary.

On a related note, another interesting difference to WSL is that in an ontology different
entities usually have very different attributes (such as the aforementioned attributes for an animal).
is is a key feature for ontologies as they are tailored for specific domains and need to reflect
the discriminating properties of heterogeneous objects. As such, the consideration of the number
and properties of attributes is as important for ontology matching as the examination of their
content. For LKBs, on the other hand, the description of the concepts is usually streamlined in
the sense that the same set of descriptive features (such as gloss, example sentences etc.) is used
for each concept. ese features need thus be general enough to apply to all different kinds of
concepts, while this is not a requirement for ontologies. Moreover, the well-defined semantics
of relations, which are often utilized by ontology matching algorithms, are not always given in
WSL. While there are, for instance, approaches which exploit particular relations in WordNet,
these algorithms are not applicable to all LKBs. In Wikipedia, for example, links between articles
usually represent only a general notion of relatedness without specifying its exact nature, and for
FrameNet, the participation of senses in the same frame is a sign of relatedness which is hard
to more specifically make statements about. To add to that problem, many resources, especially
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collaboratively constructed ones, suffer from disconnected or sparse graphs whichmakes the usage
of structural approaches ineffective, at least in isolation.

In summary, ontology matching approaches are usually not well-suited for WSL, as the
participating resources are usually only lightly structured, not as strictly specified from a semantic
perspective, and instantiations of concepts are usually not available for examination. WSL algo-
rithms (at least those which aim to be generally applicable) can only rely on the few semantic
information types which are shared among many resources, such as glosses and example sen-
tences, and the exploitation of structural information in terms of paths and distances, if no strict
assumptions about the semantics of the relations are made.

3.1.2 DATABASE SCHEMAMATCHING
Database schema matching is, in many ways, comparable to ontology matching as the objects to
be matched and the relations between them are strictly defined from a technical perspective, for
instance, via foreign key relations which connect certain database tables. us, many approaches
from ontology matching are also applicable in this case [Berlin and Motro, 2002]. e fundamen-
tal difference, however, is that in many cases a semantic interpretation of the database content is
not explicitly given. While database schemata can also model real-world concepts and relations,
there is often no other way to interpret the information than the tables’ and attributes’ names.
Moreover, database relations by means of keys also express no more than a “relationship” between
two tables in a generic, technical sense. eir actual interpretation is usually harder than for table
attributes as most database system implementations such as SQL do not allow explicitly naming
such relations.

us, even more than for ontology matching, algorithmic approaches for schema matching
rely on technicalities such as number and data types of the attributes and instantiations of enti-
ties, i.e., extensional matching [Kang and Naughton, 2003]. Graph-based approaches are further
hampered by the fact that different database design paradigms allow expressing the exact same
information with a different segmentation and allocation of data across tables. us, in summary,
this task is even further removed from WSL as semantic interpretation of the data for alignment
purposes is less relevant than metadata- or instantiation-based algorithms.

3.1.3 GRAPHMATCHING
Another related problem, which by definition can only rely on structural properties, is graph
matching, or more precisely, the detection of graph isomorphisms. e task is defined as calcu-
lating pairs of nodes from two distinct graphs which correspond to each other in the respective
graph topologies. e challenge here is that, as with database schema matching, usually no ad-
ditional information is given which allows the semantic interpretation of the graph structure. In
general, the only information available is whether two nodes in a graph are linked or not, possibly
with additional edge weights. Hence, without further constraints, an effort exponentially increas-
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ing with the number of nodes is necessary, rendering the task NP-hard [Arvind et al., 2012], but
not NP-complete [Schöning, 1988].

For the application of graph isomorphism algorithms to WSL, it is possible to impose addi-
tional constraints such as limiting the set of candidates which are possible matches for a particular
node. We would, however, still be facing the problem that LKB topologies are very different, as
the interpretation and manifestation of edges between nodes (such as semantic relations) varies
considerably and exact matches of subgraphs are thus not very likely. Consequently, for align-
ments of sufficient coverage and precision, less restrictive, heuristic matching seems necessary, in
combination with gloss-based approaches which provide the necessary background knowledge to
properly interpret the graph structure.

3.2 EVALUATIONMETRICS FORWSL
e performance of a linking algorithm is usually assessed with a variety of different metrics,
measured against gold standard datasets which were created by human annotators and are known
to be correct. To calculate them, it is necessary to count the number of all possible decisions
made: (i) true positives (TP), i.e., correct detection of positive examples, (ii) true negatives (TN),
i.e., correct detection of negative examples (non-linkings), (iii) false positives (FP), i.e., examples
which are linked but should not be, and (iv) false negatives (FN), i.e., examples which are not
linked but should be.

Precision reports how many of our decisions to link two senses are correct, i.e., the higher the
precision of our algorithm the more confident we can be that the senses we link are equivalent. It
is formally defined as:

P D
TP

TP C FP
:

Recall reports how many of the positive examples in the gold standard are found by our algo-
rithm, i.e., the higher the recall of our algorithm the more confident we can be that we detect all
valid links between senses. It is formally defined as:

R D
TP

TP C FN
:

F-measure (or F-score) is the harmonic mean of precision and recall. It is usually considered
as the crucial linking metric, as neither precision nor recall are useful in isolation. ey are also
antagonistic: perfect precision can be achieved by not linking at all (no incorrect decision is made),
while perfect recall is achieved by linking everything (no link is missed). F-measure is defined as:

F D
2 � P � R

P C R
:

Accuracy reports how many of the decisions made by the algorithm are correct in total, i.e.,
considering both positive and negative examples. While this is also a valid indicator of linking
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quality, it should be carefully judged depending on the dataset. If the data is heavily skewed, good
accuracy can easily be achieved by always assigning the majority class, e.g., if 90% of the gold
standard examples are non-linkings, a baseline linking nothing would reach an accuracy of 0:90.
us, F-measure usually reflects the quality of the alignment better. Accuracy is defined as:

A D
TP C TN

TP C TN C FP C FN
:

3.3 GLOSS SIMILARITY-BASEDWSL
In this section, we would like to start the discussion of WSL approaches by examining similarity-
based algorithms, as glosses are indispensable for humans to recognize the meaning of an encoded
sense, and thus also a logical way of assessing the similarity of senses. For tasks such as WSD,
the gloss can also be directly exploited, as one common approach is to compare this gloss to the
context of a word to correctly disambiguate it [Lesk, 1986]. us, it seems natural that a wide
variety of approaches for WSL are also based on gloss similarity.

In Section 2.3, we have already discussed several existing aligned resources and the mo-
tivation behind the respective projects. In order to avoid redundancy, we will not discuss them
in detail again, but rather focus on presenting three of the most common similarity metrics for
glosses; namely gloss word overlap, semantic relatedness expressed by semantic vectors, and Per-
sonalized PageRank (PPR) scores [Agirre and Soroa, 2009]. Table 3.1 gives an overview of the
different similarity metrics used in the various LLKBs mentioned in Section 2.3.

3.3.1 WORDOVERLAP
ebasic idea of word overlapmeasures has its roots in set theory, considering the words contained
in glosses as members of sets whose similarity can be directly measured—for instance, by just
comparing how many members are shared between the sets s1 and s2, and normalization over the
set sizes. is notion is directly expressed by Simple Matching Coefficient (SMC):

SMC.s1; s2/ D
Number of matching words

Total number of words
:

Two slightly more sophisticated measures, which are more commonly used in practice, are
the Jaccard distance, defined as

J.s1; s2/ D
js1 [ s2j � js1 \ s2j

js1 [ s2j

and the Dice Coefficient:
D.s1; s2/ D

2js1 \ s2j

js1j C js2j
:

However, as theDice Coefficient does not satisfy the triangle inequality, it is not as straight-
forwardly usable in practice.
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Note that for these approaches to work effectively, a certain degree of preprocessing (to-
kenization, stopword removal, case normalization, etc.) is sensible in order to get more accurate
results.

3.3.2 VECTORREPRESENTATIONS
A more elaborate way to calculate similarity between texts, and thus specifically between glosses,
is to represent them in a multi-dimensional vector space. e usual approach is to consider each
word in a text as one dimension (again, preprocessed for improved accuracy), and then assign
a weight to each dimension (this is generally called a bag of words, or BOW for short). e
simplest option for weighting is to merely mark the presence or absences of a word (i.e., binary
weights), however, this does not account for different word frequencies—the same is the case
for the aforementioned overlap measures, which is why this option is generally disregarded. A
better way is to use the counts of all words in the glosses as values, but it is more common to
also normalize these in relation to the set of all glosses. A frequently used approach is the tf � idf
metric which tries to capture the importance of words in the whole corpus of documents D, by
combining the term frequency tf .t; d/ of a term t within a single document d with the inverse
document frequency, commonly defined as

idf .t; D/ D log
N

fd 2 D W t 2 Dg
:

A high value for tf � idf is thus reached by a high term frequency in the given document
and a low document frequency of the term in the whole corpus.

e second step after calculating the vectors is to compute the distance (or similarity) be-
tween them. A straightforward way to do so is the cos similarity. In the geometric interpretation
of the vector space, the goal is to calculate the cosine of the angle between vector representations
V.s1/ and V.s2/ of the two senses s1 and s2. It is defined as follows:

cos.s1; s2/ D
V.s1/ � V.s2/

jjV.s1/jj jjV.s2/jj
:

While more complex measures are conceivable, the cos similarity has proven to be a robust
and scalable solution for calculating text similarities. It is especially interesting for gloss similar-
ities, as one of its major criticisms is the limited suitability for long documents—this issue does
obviously not apply here.

3.3.3 PERSONALIZEDPAGERANK
e Personalized PageRank (PPR) algorithm [Agirre and Soroa, 2009] also estimates the se-
mantic relatedness between two word senses s1 and s2 by examining the glosses. However, it is
sometimes argued that this is not strictly a text similarity measure, as the similarity score is cal-
culated using a graph-based algorithm based on the original Google PageRank [Brin and Page,
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1998]. More precisely, the glosses are represented as semantic vectors Prs1
and Prs2

where the
main idea of choosing Pr is to identify those nodes in the graph that are central for describing
a sense’s meaning. ese nodes should have a high centrality (that is, a high PageRank score),
which is calculated as

Pr D c M Pr C .1 � c/ v

with the damping factor c controlling the random walk, the transition matrix M of the underlying
semantic graph, and the probabilistic vector v, whose i th component vi denotes the probability
of randomly jumping to node i in the next iteration step. e formula is recursively defined as
the algorithm starts out with random vectors and iterates toward the optimal solution by means
of the transition matrix.

A popular variant for calculating the final PPR score is the one introduced by Niemann
and Gurevych [2011]:

PPR.s1; s2/ D 1 �
X

i

.Prs1;i � Prs2;i /
2

Prs1;i C Prs2;i

:

Unlike in the traditional PageRank algorithm, the components of the jump vector v are
not uniformly distributed, but personalized to the sense s by choosing vi D

1
m

if at least one lexi-
calization of node i occurs in the definition of sense s, and vi D 0, otherwise. e normalization
factor m is set to the total number of nodes that share a word with the sense descriptions, which
is required for obtaining a probabilistic vector.

To be able to apply such a graph-based algorithm, it is obviously necessary to have a se-
mantic graph, i.e., one representing a network of concepts, as a foundation. In the original imple-
mentation by Agirre and Soroa [2009] the WordNet 3.0 graph is used as reference, but in later
work PPR was extended to other graphs such as Wikipedia [Pilehvar and Navigli, 2014].

3.3.4 ADDITIONALREMARKS
After the similarity scores are calculated, it is still necessary to make a decision based on them.
e most straightforward way which has been discussed is to chose the candidate with the high-
est score (regardless of the absolute value) [Henrich et al., 2011]—however, this precludes the
possibility of assigning several candidate senses to one source sense in case of differing sense
granularities. Another way is to use a fixed similarity threshold [Pilehvar and Navigli, 2014] or
learn an ideal threshold on a training set [Hartmann and Gurevych, 2013, Meyer and Gurevych,
2011, Niemann and Gurevych, 2011]. While the latter method reliably yields good results on
various datasets, the additional effort of creating a sufficiently large training set should not be
underestimated.

Another aspect which has been considered in the literature is the applicability to languages
other than English. Word overlap measures and vector representations are inherently language
independent, only the normalization and preprocessing need to be adapted, for instance to cor-
rectly capture frequencies in morphologically rich languages like German. For the PPR similarity,
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Table 3.1: Approaches linking LKBs manually (top), using gloss overlap (middle) or some other no-
tion of semantic relatedness (bottom)

Work Method Resource Pair

Reed and Lenat [2002] manual WordNet-Cyc

Shi and Mihalcea [2005] manual/structure WordNet-FrameNet

Mihalcea [2007] manual WordNet-Wikipedia

Suchanek et al. [2007] overlap WordNet-Wikipedia

Knight and Luk [1994] overlap WordNet-LDOCE

Kwong [1998] overlap WordNet-LDOCE/Roget

Burgun and Bodenreider [2001] overlap WordNet--UMLS

Ruiz-Casado et al. [2005] overlap WordNet-Wikipedia

De Melo and Weikum [2010] overlap WordNet-Wikipedia

Henrich et al. [2011] overlap GermaNet-Wiktionary

Navigli [2006] relatedness WordNet-ODE

Toral et al. [2009] relatedness WordNet-Wikipedia

Meyer and Gurevych [2011] relatedness WordNet-Wiktionary

Niemann and Gurevych [2011] relatedness WordNet-Wikipedia

Hartmann and Gurevych [2013] relatedness FrameNet-Wiktionary

Matuschek et al. [2013] relatedness Wiktionary-OmegaWiki

Gurevych et al. [2012a] relatedness WordNet-OmegaWiki

the case is a little more complicated, as for the calculation of the semantic vectors a richly linked
LKB in the respective language is required—while, for instance, GermaNet might be suitable for
German, for many less-resourced languages the usage of this measure might be problematic.

An important issue in this context is the cross-lingual linking of senses, i.e., the linking of
LKBs in different languages. For this particular task, it was shown that reducing the problem to
the monolingual case using a state-of-the-art machine translation engine on one of the resources
yields satisfactory results [Gurevych et al., 2012a]. Other works such as Spohr et al. [2011] suggest
using a third pivot languages to facilitate the mapping.

In general, similarity-based approaches give reasonable results (with precision usually in
the range of 0.60-0.80), but they suffer from the inherent problem that they depend on the for-
mulation the glosses, which might lead to problems in case of insufficient lexical overlap (known
as the “lexical gap”; see for instance Meyer and Gurevych [2011]). Consider these two senses of
essalonian in Wiktionary and WordNet : “A native or inhabitant of essalonica” and “Some-
one or something from, or pertaining to, essaloniki.” ese are (mostly) identical and should
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intuitively be linked, but there is no word overlap due to the usage of the synonyms essalonica
and essaloniki. Nevertheless, this approach to WSL is not only intuitively reasonable, but also
the method of choice for the first investigations in this area, thus representing the state of the art
for a considerable time.

3.4 GRAPHSTRUCTURE-BASEDWSL
As we have seen in the previous section, linking based on gloss similarity is an intuitively valid
approach which, in general, gives results significantly outperforming naive baselines. Neverthe-
less, we have also discussed that it suffers from the inherent problem of low recall if the glosses
do not match lexically.

is difference between human judgment and similarity-based approaches for judging the
equivalence of senses motivated the investigation of similarity measures which do not focus on
the textual descriptions of senses, but the structure of the resources. is development is fueled
by the recent emergence of electronic and especially machine-readable LKBs which allow auto-
matic analysis and exploitation of their structure. In classic dictionaries, there are also references
to related words, synonyms, etc., but these references are either not disambiguated at all, or addi-
tional look-up effort is required to induce a graph structure (cf. Engelberg and Lemnitzer [2001,
Ch. 4.4]).

is situation is different for resources such as WordNet, which unambiguously connects
synsets via semantic relations, or Wikipedia, which contains many hyperlinks between distinct ar-
ticles, i.e., concepts. In both cases, a graph structure is implied, and it intuitively makes sense that
directly connected concepts must be somehow related, while concepts which are in close proxim-
ity to each other probably belong to the same topic. is intuition was, for instance, confirmed
in the context of the semantic relatedness task [Navigli and Ponzetto, 2012c, Rada et al., 1989,
Zesch et al., 2008a], where the length of paths in the graph representation of a LKB turned out
to be a good indicative feature. Following this idea, considering the structure of LKBs for WSL
is a promising approach to alleviate the disadvantages of the similarity-based approaches, as the
approaches do not depend on the properties of the glosses. Especially for expert-built resources
and Wikipedia, a dense graph can be obtained which covers the majority of senses, while the
graphs for the other collaboratively constructed resources have fewer edges in general [Garoufi
et al., 2008, Matuschek, 2014].

A general issue with these graphs is that, although relations can carry certain explicit se-
mantics (such as hyponymy), this is not guaranteed (e.g., for Wikipedia links), and different
resources also express different aspects of relatedness (such as frames in FrameNet) which are
not straightforwardly applicable to other resources. us, the most common approach for inves-
tigating algorithms based on the structure of multiple LKBs is to treat the edges as unlabeled.
is is the most reasonable way to keep approaches flexible and generally usable, but this limits
the potential benefit from exploiting the structure. Reasoning over relations is, for instance, used
for many ontology matching approaches (see Section 3.1.1), and also for WSL many approaches
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have been suggested which make explicit use of the semantics encoded in the relation. Table 3.2
gives an overview of the approaches discussed in this section.

3.4.1 WIKIPEDIACATEGORYALIGNMENT
Toral et al. [2008] alignWordNet synsets toWikipedia categories by comparing andmatching the
WordNet tree structure to the Wikipedia category graph. ey reach very good results, with an F-
measure of up to 0.82 depending on the configuration. eir approach is, however, not applicable
to the general case of WSL for several reasons. First, they only focus on matching Wikipedia
concepts with compatible “instance of ” relations in WordNet, i.e., abstract concepts which have
real-world instantiations (e.g., “Tom Cruise” is an instance of “actor”). Concepts which do not
adhere to this pattern are disregarded. is is valid in the scope of the particular case, but it does
not cover the general case and is especially ill-suited for other parts of speech since, for instance,
verbs cannot be instantiated.

Ponzetto and Navigli [2009] also propose a graph-based method to tackle the problem
of aligning WordNet synsets and Wikipedia categories, with the purpose of restructuring the
Wikipedia category graph in a subsequent step. Using semantic relations, they build WordNet
subgraphs for each Wikipedia category and then align those synsets which are the best topolog-
ical match according to these subgraphs, reaching an accuracy of 0.81. Like Toral et al. [2008],
they only focus on a particular kind of semantic relation in WordNet (“is a” relations, expressing
hyperynymy) in order to cover their specific application scenario, which is not directly applicable
to parts of speech other than nouns. Moreover, the potentially useful information in the cate-
gory graph is disregarded in the alignment step as only the WordNet taxonomy is used as an
information source for linking.

3.4.2 SHORTESTPATHS
Laparra et al. [2010] present the SSI-Dijkstra+ algorithm, which is based on calculating shortest
paths, to link FrameNet lexical units (LUs, the FrameNet equivalent to word senses) to WordNet
synsets and create the combined resource WordFrameNet. e basic idea is to align monosemous
LUs first and, based on this, find the closest synset in the WordNet graph for the other LUs in
the same frame. ey reach a result of 0.79 (F-measure), however, they make some assumptions
which apply only to their particular case. For instance, the algorithm not only relies on the se-
mantic relations found in WordNet, but also from the enriched eXtendedWordNet [Mihalcea and
Moldovan, 2001a] in order to find a sufficient number of targets. us, it is not straightforwardly
applicable to other resources which have no or only few relations such as Wiktionary and for
which no such high-quality extensions exist. Moreover, for the case that no monosemous LU
exists in a frame, they align to the most frequent sense. is information is not available in most
other resources. e issue of missing monosemous “anchors” into WordNet could be tackled by
also considering LUs from other frames connected via frame relations, i.e., exploiting the graph
structure for FrameNet as well. However, as SSI-Dijkstra+ is originally a word sense disambigua-
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tion (not linking) algorithm, it disregards this structure and merely considers LUs as texts which
are to be disambiguated in isolation. In other words, only the “local” information for each LU is
used.

Navigli [2009a] aims at disambiguating WordNet glosses, i.e., assigning the correct senses
to all non-stopwords of each WordNet gloss. His approach is to find the shortest possible circles
in the WordNet relation graph to identify the correct disambiguation. is “resource-internal”
WSD was in later work extended to the disambiguation of translations in the Ragazzini-Biagi
English-Italian bilingual dictionary (RBEID) [Flati and Navigli, 2012], which is just a different
formulation of the WSL of two LKBs, as the English and Italian part of the dictionary can be
considered separate LKBs. ey reach an F-measure of 0.85, nevertheless, the algorithm benefits
from the circumstances of the task: i) the English and Italian parts of the RBEIDhave comparably
dense graph structures, which is not always given in the general case, and ii) as the English and
Italian entries were created in a coordinated effort, we can assume that most senses in one part
are represented in the other (i.e., there is a high conceptual overlap), and also that the sense
granularities are similar. Both of these properties make the task substantially easier than aligning
two heterogeneous LKBs. Additionally, for the cross-lingual case, the identification of possible
alignment candidates is usually also a separate issue, which, for instance, can be addressed by
machine translation (see also Section 3.3.4). Here, the alignment candidates are already given by
the list of translations for each entry.

Matuschek and Gurevych [2013] present Dijkstra-WSA, an algorithm which was designed
in the context of the unified resource UBY. One of the design goals is to make the algorithm
flexibly applicable to as many resources as possible. It is the first attempt to apply a graph-based
algorithm to full graph representations of two arbitrary resources, not just sub-graphs. Akin to
the approach by Laparra et al. [2010], the first step is to align trivial cases, i.e., those senses with
the same lexeme and only one sense in either resource. For the remaining senses, these trivial
alignments serve as bridges between the LKBs to compute the shortest path to each candidate
sense with Dijkstra’s shortest path algorithm [Dijkstra, 1959]. e candidate with the shortest
distance is then assigned as the alignment target. An alternative is to define a fixed threshold
for the maximum path length to allow 1:n alignments. A major downside of this algorithm is
its dependence on a dense graph structure, which is why it struggles on sparse resources like
Wiktionary. For this case, the authors suggested a two-step approach of using Dijkstra-WSA
first and then catering for the unaligned senses with conventional gloss-based measures, which
yielded satisfactory results.

3.5 JOINTMODELING

We have seen in the last two sections that similarity-based and structure-based approaches to
WSA both have their advantages when covering different aspects of sense similarity, and these
complement each other: the former approaches work generally well, but they struggle if the for-
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Table 3.2: WSL works using the structure of LKBs

Work Resource

Toral et al. [2008] WordNet-Wikipedia categories

Ponzetto and Navigli [2009] WordNet-Wikipedia categories

Laparra et al. [2010] WordNet-FrameNet

Navigli [2009a] Disambiguatoin of WordNet glosses

Flati and Navigli [2012] RBEID (English part-Italian part)

Matuschek and Gurevych [2013] Several (UBY)

mulation of glosses is too different. e latter approaches can cope with that, but are limited in
their performance in case of sparse LKBs such as Wiktionary.

We already discussed the simple fallback approach by Matuschek and Gurevych [2013]
which applies both ideas in two distinct steps. However, a logical next step is to combine these
two perspectives into a joint framework. Usually, these more complex approaches rely on machine
learning and appropriate feature engineering, some of them focusing on WordNet-specific infor-
mation types, others taking a broader perspective. A general characteristic of these approaches is
their dependency on manually annotated training data, which was not the case for the similarity
metrics presented earlier.

3.5.1 MACHINELEARNINGAPPROACHES
Ferrandez et al. [2010] align FrameNet LUs and WordNet synsets. For a candidate pair, they first
traverse the relations in both resources independently to construct “neighborhood graphs,” with
the source word sense at the center. en, for each neighbor (appearing in any or in both neigh-
borhoods) they calculate the distance to the centering word of each neighborhood and produce a
normalized similarity score based on this, hence incorporating structural information from both
resources. Plainly spoken, if both senses have similar neighbors in the respective LKBs, they are
also considered to be similar; this idea is in line with other graph-based approaches presented
earlier. As an additional feature, they also consider the textual similarity between glosses, but
only on the character level. Using 100 examples for training their classifier, they achieve an accu-
racy of 0.77. e algorithm heavily relies on the particular relation types in WordNet (e.g., hy-
ponymy, meronymy) and FrameNet (e.g., inheritance, causative) to assign optimal edge weights
for the graph, which impairs the applicability to other LKBs. Moreover, Ferrandez et al. [2010]
do not investigate the behavior of their classifier in cases where either distances or gloss similari-
ties are (partially) missing, as these cases are negligible when examining the expert-built resources
FrameNet and WordNet. For collaboratively constructed resources such as Wiktionary, however,
this possibility also needs to be considered.
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Matuschek and Gurevych [2014] combine their original Dijkstra-WSA algorithm [Ma-
tuschek and Gurevych, 2013] with gloss similarity features. More precisely, they use cos and PPR
similarity, along with the distances between senses calculated with Dijkstra-WSA, in different
machine learning configurations from the WEKA toolkit [Hall et al., 2009] to achieve substantial
improvements over their previous work in most cases. Although they experiment with other, more
complex features, no significant improvement over this straightforward combination of glosses
and structure can be achieved, which suggests that this small set of features works reasonably well
for most resources. An additional insight is that Bayesian networks show the most robust perfor-
mance across datasets, while at the same time showing a very good runtime efficiency, which was
an important design goal for constructing the large-scale linkings in the context.

De Melo and Weikum [2008] also use a machine learning approach, not with the goal
of aligning existing LKBs, but the closely related one of creating new ones. In particular, they
aim to create wordnets in a target language L0 other than English by using the structure of the
Princeton WordNet as a “blueprint.” ey tackle this issue by first providing a set of candidate
translations for the lexemes contained in a WordNet synset from translation dictionaries, and
then deciding for each translation if it is appropriate for this synset or not, based on a manually
annotated training set. ey train the classifier on a large variety of features based on the structure
and the content of WordNet, and thereby reach a precision of 0.81. However, this approach is
not easily generalizable as they also use WordNet-specific features such as corpus frequencies
which are not readily available for most LKBs. Moreover, the task is inherently easier than full-
scale (cross-lingual) WSL, because deciding if a lexeme l is a valid lexicalization for a concept in
WordNet and then creating a new corresponding synset in L0 circumvents the more challenging
step of choosing the correct target in an existing LKB.

3.5.2 UNSUPERVISEDAPPROACHES
Bond and Foster [2013] link wordnets in many different languages to Wiktionary in the course of
theOpenMultilingualWordnet project. eir core alignment algorithm is based on gloss similarity
(following Niemann and Gurevych [2011], see Section 3.3), but they also incorporate structural
information by considering translation links, i.e., two senses are assumed to be equivalent if they
share many translations. ey use manually set thresholds to avoid creating training sets for each
language, and while the accuracy is sufficient (around 0.90), a major issue is the relatively low
coverage of translations in Wiktionary, especially for smaller languages, which impairs the recall
of this approach. Also, although Bond and Foster [2013] briefly describe the relational structure
of the various wordnets, they do not make use of any additional structural features for the actual
alignment.

Building on their own previous work on Wikipedia categories [Ponzetto and Navigli,
2009], Navigli and Ponzetto [2012a] align WordNet with Wikipedia articles in the context of
BabelNet, reaching an F-measure of 0.78 on their own gold standard data set. Besides using bag-
of-words overlap to compute gloss similarity, they build “disambiguation contexts” for Wikipedia
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articles by, for instance, using redirect links, and then assigning word senses to the lexemes in these
contexts. To achieve this, a graph structure is built from WordNet semantic relations covering all
possible WordNet senses of all lexemes contained in such a context, and local proximity is used
to make the alignment decision. However, the information contained in the graph structure of
Wikipedia is not fully considered, as only a subset of Wikipedia links is used to compose the
disambiguation contexts. Moreover, for the actual alignment step, just a locally restricted subset
of WordNet relations is used to make the decision, not the full WordNet graph, which would
potentially provide additional valuable information about the senses to be aligned.

In the context of BabelNet, Pilehvar and Navigli [2014] achieve good results by using a
gloss similarity component (as described earlier) in conjunction with a novel graph-based ap-
proach. ey adapt the already discussed PPR measure to operate on custom graph representa-
tions for several LKBs such as Wiktionary and Wikipedia. In this context, they also present new
approaches for ontologizing and enriching these resources with further links, which is crucial es-
pecially for Wiktionary as it does not provide links between senses. Instead of then directly using
the PPR similarity as feature for the linking, for each sense they separately identify the central
nodes in either graph, restrict the graph to the monosemous ones and then calculate a ranking-
based score on the intersection of both graphs. In this way, they obtain the best results for WSL
which have been reported so far, without the need to resort to manually annotated training data
as they use predefined similarity thresholds.

Table 3.3: Approaches to WSL using combined features

Work Resource (pair)

Bond and Foster [2013] WordNet-Wikipedia

Navigli and Ponzetto [2012a] WordNet-Wikipedia

Ferrandez et al. [2010] WordNet-FrameNet

De Melo and Weikum [2008] WordNet construction

Matuschek and Gurevych [2014] Several (UBY)

Pilehvar and Navigli [2014] Several (BabelNet)

3.6 CHAPTERCONCLUSION
In this chapter, we discussed a variety of algorithms for linking of LKBs, and highlighted their
particular strengths and weaknesses. We also covered the cross-lingual linking of LKBs which
can be reduced to the monolingual case using state-of-the-art machine translation. It has become
clear that the most important question to consider when choosing an algorithm is evaluating the
available information in the resources to be linked. For instance, for unstructured (or “flat”) textual
resources, measures like cos or vector space similarity yield satisfactory, but not in all cases stellar
results. If structural information, e.g., semantic relations, is available, graph-based approaches
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have shown promising results, but only if the structure is sufficiently elaborate, as is the case for
Wikipedia or WordNet.

e most recent trend (and current state-of-the-art) shows that the combination of both
structural and textual features is most promising, as these two directions complement each other’s
strengths and weaknesses nicely. is is especially true if manually annotated training data can
be used to inform machine learning classifiers, but also in cases where this data is not available
or the effort of creating it would be too high, good results can be achieved by manually setting
similarity or distance thresholds.

Nevertheless, we have seen that this field of research evolved rather quickly, and new
approaches and features for other resource combinations and languages will no doubt emerge
quickly. Also ideas from other related areas such as ontology matching or schema matching
(which we have also briefly discussed) will be examined more closely, and could lead to even
better results in the future.
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Fundamental Disambiguation
Methods

In this chapter, we introduce the task of “disambiguating textual units” in a broader sense that
covers not only WSD, but also entity linking or Semantic Role Labeling (SRL). We will build
upon this definition in this and also in the next chapter. e main part of this chapter presents
fundamental methods addressing the task of disambiguating textual units and discusses how the
performance of these methods has been enhanced by employing LLKBs. We conclude by point-
ing out the impact of LLKBs on sense-annotated corpora, which are important resources in the
context of automatic disambiguation.

4.1 DISAMBIGUATINGTEXTUALUNITS
We start by introducing a set of related tasks that have a disambiguation step in common, i.e.,
textual units are disambiguated relative to a sense inventory. First, we define the notion of textual
unit, and then the task of disambiguating textual units.

Definition Textual Unit: We define a textual unit as the occurrence of a word, a multiword
expression, including named entities, or a predicate-argument structure in text.

In contrast to words andmultiword expressions, named entities can also occur only partially.
For example, the multiword expression sushi bar (e.g., as in: She went into a sushi bar) completely
changes its meaning if one of the parts are omitted (e.g., She went into a bar), or even becomes
ungrammatical (e.g., �She went into a sushi). Named entities, on the other hand, can usually occur
just partially, e.g., Tony Blair can stand for the full named entity Prime Minister Tony Blair.

A word-level textual unit corresponds to a token, and a multi-word-level textual unit to a
phrase, which might be discontinuous as in: She took her car in for maintenance where the predicate
take in is discontinuous.

A predicate-argument-level textual unit corresponds to a (possibly discontinuous) phrase
as well, consisting of the predicate word and its argument phrases. e following example illus-
trates the occurrence of a predicate-argument-level textual unit within a sentence (“arg” stands
for “argument”): Someday heŒarg_1� will recognizeŒpred� what he witnessed hereŒarg_2� .

Definition Disambiguating Textual Units: e task of disambiguating textual units is to man-
ually or automatically annotate them with sense identifiers from a particular sense inventory given



46 4. FUNDAMENTALDISAMBIGUATIONMETHODS

in a LKB. is requires determining the meaning of textual units given their context, relative to
a given set of senses.

Depending on the type of textual units to be disambiguated and on the particular sense
inventory used, several variants of disambiguating textual units are commonly distinguished (the
sense inventory is typically given by a LKB).

• WSD [Navigli, 2009b] considers the disambiguation of words or multiword expressions
relative to a LKB such as WordNet.

• Entity linking [Erbs et al., 2011] disambiguates named entities (i.e., multi-word-level tex-
tual units) relative to a KB rich in named entities (such as Wikipedia or Freebase).¹ e
close similarity of WSD and entity linking has also been reflected in a recent SemEval
shared task that combines WSD and entity linking.²

• Relation extraction disambiguates predicate-argument-level textual units that correspond
to relation mentions, i.e., only focusing on predicates that express relations provided in a
KB (e.g., the relation EducatedAt as in: Stephen Hawking graduated from Oxford where the
predicate expressing the relation is underlined). Accordingly, predicates and their arguments
are disambiguated relative to relationships and named entities provided in factual KBs such
as Freebase.

• SRL disambiguates predicate-argument-level textual units relative to a LKB providing
predicate-argument structure information, such as FrameNet or VerbNet. Commonly, this
disambiguation task is performed in two steps: first, the disambiguation of the predicate
(typically a verb); and second, the labeling of the (identified) arguments with semantic
roles—which depends on the disambiguation result since semantic roles are often predicate-
specific (see, e.g., examples in Section 1.1.2).

4.2 ENHANCEDDISAMBIGUATIONUSINGLLKBS
In this section, we describe the major approaches to disambiguation and how their performance
has been enhanced by using LLKBs.

4.2.1 APPROACHES
Twomain approaches to the automatic disambiguation of textual units relative to a sense inventory
can be distinguished: first, knowledge-based approaches relying on a KB (or LKB) as primary
knowledge source, and second, machine learning approaches using sense-annotated corpora as
primary knowledge source. Both approaches use a LKB which defines the sense inventory.

¹In contrast, co-reference resolution is the task to link named entities to other mentions (such as pronouns) in a given discourse;
co-reference resolution can thus be performed without any KB.
²http://alt.qcri.org/semeval2015/task13/

http://alt.qcri.org/semeval2015/task13/
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Knowledge-based approaches make use of information from LKBs to tackle the disam-
biguation task. ere are the two main classes of Lesk-based algorithms and graph-based algorithms.

Lesk-based Approaches Lesk-based approaches compare the context of the target textual unit
with each of its sense definitions in a LKB, and assign the sense which has the lexical overlap or
the highest semantic relatedness with the context. eir name refers to the seminal work where
this idea was formulated for the first time [Lesk, 1986].

Since its introduction, numerous variations of the Lesk algorithmhave been developed, e.g.,
using adapted versions of the lexical overlap measure, or extending the sense definitions given in
the LKB in order to increase the lexical overlap [Baldwin et al., 2010, Banerjee and Pedersen,
2002, Miller et al., 2012]. One particular way to increase the coverage of the Lesk-algorithm
is to use a distributional thesaurus [Iida et al., 2008, Miller et al., 2012]. For example, Miller
et al. [2012] represent a sense as a bag-of-words derived from the gloss, synonyms, and example
sentences provided by the WordNet sense inventory. Additionally, for each content word found
in this extended sense definition, a distributional thesaurus [Biemann and Riedl, 2013] is used
to identify the top 100 most similar words in a corpus. ose top similar words are then added
to the sense definition, and the Lesk-algorithm is applied to perform WSD. e idea is that the
test sentences are likely to contain the words present in the corpus-based distributional thesaurus.
is allows the Lesk-algorithm to find more overlaps and thus, increases WSD performance.

A drawback of most Lesk-based algorithms is that they do not account for word order.
Such information is important for verb senses, as the syntactic behavior of a verb reflects aspects
of its meaning.

Approaches assigning a sense based on semantic relatedness, on the other hand, compute
the semantic relatedness between the target word and its context, and the senses in a LKB [Hen-
rich and Hinrichs, 2012, Pedersen et al., 2005]. Extensions of this approach use optimization
algorithms to jointly disambiguate the target word and the other words in its context [Cowie
et al., 1992, Decadt et al., 2004].

Graph-based Approaches Graph-based approaches to the disambiguation of textual units have
also been investigated with great success, similar to word sense linking. ese approaches exploit
the structure of the KBs. One of the first was the SSI algorithm which uses sophisticated rules
for exploiting certain kinds of semantic relations in WordNet [Navigli and Velardi, 2005]. Other
resources like Wikipedia [Mihalcea, 2007, Mihalcea and Faruque, 2004] were also investigated,
as were more complex algorithms like, for instance, PPR, an algorithm which we also discussed
earlier in this book [Agirre and Soroa, 2009, Agirre et al., 2009b]. In general though, it turned
out that these graph-based approaches require rich and sophisticated structures to be directly
applicable, so that supervised approaches came more into focus to avoid the need for these.

Machine Learning Approaches Regarding machine learning approaches, there are three main
paradigms that have been applied to the task of WSD: supervised [Màrquez et al., 2006], unsu-
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pervised [Pedersen, 2006], and semi-supervised. In supervised learning, sense-annotated corpora
are used as training data to learn a classifier that performs the disambiguation task.

Supervised systems rely on manually sense-annotated corpora which are typically expensive
to create, and they tend to be biased toward the text domain(s) of the training corpus [Yuret,
2004].

In semi-supervised learning, large amounts of unlabeled data are combined with small la-
beled datasets. Some of the previous semi-supervised approaches to WSD considered bootstrap-
ping where a supervised classifier and a small number of seed instances or patterns are employed
to bootstrap learning [Fujita and Fujino, 2011, Mihalcea, 2004, Yarowsky, 1995]. ose meth-
ods, however, often suffer from low precision. A more recent variant of semi-supervised learning
called distant supervision is introduced in detail in Chapter 5.2.

Unsupervised learning usually involves statistical clustering of word occurrences in an unla-
beled corpus (i.e., without any given sense inventory), a task which is also called word sense induc-
tion. Such methods can use large amounts of data, but the induced word senses may be difficult
to map to a sense inventory. As a result, unsupervised WSD systems are at a disadvantage if they
need to disambiguate relative to an inventory that is supplied to the supervised systems by virtue
of the training data. For this reason, unsupervised learning is usually not used for WSD (accord-
ing to our definition in Section 4.1), but rather for word sense induction. For further information
on word sense induction, the interested reader should take a look at the dedicated SemEval com-
petitions for this task [Agirre and Soroa, 2007, Jürgens and Klapaftis, 2013, Manandhar et al.,
2010].

4.2.2 OVERVIEWOFWORK INTHIS AREA
Our discussion of works where LLKBs have been used for improving the performance of auto-
matic disambiguation (see overview in Table 4.1) follows the main approaches to disambiguation
introduced above. While distant supervision as an instance of semi-supervised learning has suc-
cessfully exploited LLKBs (see Section 5.2), we are not aware of any supervised approaches having
improved the WSD performance using LLKBs.

Lesk-based Approaches Since Lesk-based algorithms rely on the lexical overlap between the
context of the target word and sense definitions, previous works have used LLKBs in order to
extend the sense definitions. Ponzetto and Navigli [2010] align WordNet senses with Wikipedia
articles to automatically extend sense definitions. ey employ a Lesk-based algorithm and a
graph-based algorithm to evaluate the impact on WSD. While their evaluation demonstrates that
the use of a LLKB boosts the performance of knowledge-based WSD, it is restricted to nouns,
since Wikipedia provides very few verb senses. Shi and Mihalcea [2005] describe a rule-based
semantic parser that performs SRL and relies on a LLKB integrating FrameNet and VerbNet,
also including a linking between VerbNet selectional preferences and WordNet synsets, as well as
FrameNet semantic roles and VerbNet syntactic arguments. Flati and Navigli [2013] use heuristic
rules on BabelNet to disambiguate nominal verb arguments.
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Graph-based Approaches In the area of graph-based approaches, the LLKB BabelNet has been
used for a variety of different approaches to the disambiguation of textual units, also including
entity linking and multilingual WSD [Moro et al., 2014b, Navigli and Ponzetto, 2012b,d]. Due
to its rich graph structure, BabelNet lends itself particularly well to these algorithms. e ap-
proach by Moro et al. [2014b] tackles WSD and entity linking jointly and in a uniform way by
leveraging a graph random walk algorithm for creating a graph structure of the text based on the
BabelNet graph, and applying a densest subgraph heuristic for disambiguating the text. Agirre
et al. [2014] present a method based on the Meaning Multilingual Central Repository (MCR),
which is methodologically interesting due to its novel use of random walk algorithms.

Table 4.1: Disambiguating textual units using LLKBs

Work KB Task/Textual Unit

Ponzetto and Navigli [2010] WordNet-Wikipedia English WSD: nouns

Shi and Mihalcea [2005] VerbNet-FrameNet English SRL

Navigli and Ponzetto [2012d] BabelNet Multilingual WSD

Flati and Navigli [2013] BabelNet English WSD: verb arguments

Moro et al. [2014b] BabelNet Multilingual WSD, English entity

linking

Agirre et al. [2014] MCR English WSD

Reflection We have seen that the enriched sense representations available in LLKBs function
as an enabler for well-performing rule-based approaches, such as Lesk-based algorithms. Similar
as for the Lesk-based approaches, the combination of several LKBs provides the graph-based
algorithms with richer sense representations in the form of a denser network of relations between
senses. is directly leads to higher precision as well as recall due to the broader information base.

While both BabelNet and MCR can in principle be used for multilingual disambiguation,
there are few multilingual evaluation datasets compared to English. For this reason, the majority
of works listed in Table 4.1 have been evaluated for English.

4.3 ROBUSTDISAMBIGUATIONHEURISTICS
While the automatic disambiguation of corpus instances is a hard problem in general, especially
when considering verbs and a fine-grained sense inventory such as WordNet, the situation is
different when a LLKB such as UBY is used, which allows flexible movement between several
sense inventories of different granularity. is flexibility can be exploited in specific semantic
tasks where a heuristic disambiguation step using the fine-grained WordNet sense inventory can
be combined with a mapping to a more coarse-grained sense inventory.
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For example, Flekova and Gurevych [2015] used the LLKB UBY as a source of semantic
features in the task of profiling fictional characters in books. ey found semantic aspects of verbs
to be effective for the classification of fictional characters into several psychologically motivated
types. e particularly successful features for verbs were the (sense-specific) VerbNet classes. In
order to extract these features, they employed a robust disambiguation heuristic which combines
the most-frequent-sense heuristic using WordNet with the mapping to the more coarse-grained
verb classes of VerbNet. AlthoughWordNet’smost-frequent-sense heuristicmight yield an incor-
rect WordNet sense, the mapping of this fine-grained sense to a more coarse-grained inventory is
able to correct the wrong disambiguation in many cases. Consider as an example the sentence She
announced the winner of the competition to an excited audience. with the target word announce and
the most frequent sense “make known; make an announcement” (according to SemCor). While
“make known; make an announcement” is incorrect relative to the WordNet sense inventory—
the correct WordNet sense being “give the names of ”—it is linked to the VerbNet verb class
announce_say-37.7-1, which is the same verb class that is also linked to the correct WordNet
sense. e classification experiments by Flekova and Gurevych [2015] demonstrate the effective-
ness of this robust disambiguation heuristic.

A similar, but simpler, way of exploiting this heuristic combines WordNet’s most-frequent-
sense with a mapping to the WordNet semantic fields. For example, there are four different senses
of promise in WordNet 3.1, the most frequent one and two others belonging to the semantic field
“communication,” and only one sense (the least frequent) belonging to a different semantic field
“stative.”

It is important to point out that this flexibility of moving between different, but linked
sense inventories is only offered by LLKBs such as UBY that keep the original LKBs intact, as
opposed to, e.g., BabelNet.

4.4 SENSECLUSTERING
edrivingmotivation behind all of the presented linking efforts is the fact that not every resource
is equally well suited for each task, e.g., because of different lexical and sense coverage or different
information types. We saw in Section 4.2 that for word sense disambiguation, a combination of
resources instead of a single one has proven beneficial to the performance. A related issue is that
the actual annotation of word senses usually uses only a single sense inventory, and in most cases
this is an expert-built one.

4.4.1 METHOD
e Princeton WordNet [Fellbaum, 1998a] is the predominant sense inventory for English be-
cause of its free availability, its comprehensiveness, and its use in dozens of previous studies and
datasets. For German, GermaNet [Hamp and Feldweg, 1997] is the reference resource for WSD,
although systematic investigation of German WSD has only recently begun [Henrich and Hin-
richs, 2012].
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However, there is much evidence that suggests that the sense distinctions of such expert-
built wordnets are too fine-grained—i.e., they are more subtle than what is typically necessary for
real-world NLP applications, and sometimes even too subtle for human annotators to consistently
distinguish. is point has been made specifically for WordNet [Ide and Wilks, 2006], but applies
to other resources as well. is makes improving upon experimental results difficult, while at the
same time the downstream benefits of improving WSD on these resources are often not clearly
visible.

Much prior work has therefore been dedicated to decreasing the granularity of LKBs
through (semi-)automatic sense clustering. In this section, we describe how WSL can contribute
a solution to the granularity problem.

Definition Word Sense Clustering: Word sense clustering is the process of (manually or au-
tomatically) identifying senses in a LKB which are similar to such a degree that they could be
considered the same, variants of each other, or subsenses of the same broader sense. e purpose
of this is to merge these senses (i.e., to define the set of clustered senses as a single new sense)
in order to facilitate the usage of the sense inventory in applications which benefit from a lower
degree of polysemy.

As an example, the two WordNet senses of ruin—“destroy completely; damage irrepara-
bly” and “reduce to ruins”—are very closely related and could be used interchangeably in many
contexts.

e focus of attention for clustering has almost exclusively been the English WordNet, and
it has been shown that such clustering significantly enhances human inter-annotator agreement
[Palmer et al., 2007]. While it has been shown that automatic WSD performance [Snow et al.,
2007] also benefits from clustering WordNet senses, it must be taken into account that the ran-
dom sense baseline is improved as well. Furthermore, the benefit of coarser WSD has yet to be
proved in downstream tasks.

4.4.2 OVERVIEWOFWORK INTHIS AREA
Merging fine-grained senses into coarser units has been a perennial topic in WSD. Past ap-
proaches have included using text- and metadata-based heuristics (definition text, domain tags,
etc.) to derive similarity scores for sense pairs in electronic dictionaries [Chen and Chang, 1998,
Dolan, 1994], exploiting wordnets’ semantic hierarchies to group senses by proximity or common
ancestry [Buitelaar, 2000, Ide, 2006,Mihalcea andMoldovan, 2001b, Peters et al., 1998, Tomuro,
2001], grouping senses which share translations into another language [Resnik and Yarowsky,
2000], using distributional similarity of senses across usage contexts [Agirre and Lopez de La-
calle, 2003, McCarthy, 2006], exploiting disagreements between human annotators of sense-
tagged data [Chklovski and Mihalcea, 2003], heuristically mapping senses to learned seman-
tic classes [Kohomban and Lee, 2005], and deep analysis of syntactic patterns and predicate-
argument structures [Palmer et al., 2004, 2007].
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While all of the approaches mentioned above consider the senses of particular LKBs in
isolation, another way to produce such a clustering is WSL, which was introduced in Chapter 2.
If it is not restricted to 1:1 linking (i.e., a sense may participate in more than one pair), it is
possible that a sense s in one resource A is assigned to several senses t1; : : : ; tn in another resource
B . Assuming that all links are valid, this suggests that s 2 A is more coarse-grained and subsumes
the other senses, which in turn can be considered as a sense cluster within B . For example, the
aforementioned senses of ruin could both be linked to the Wiktionary sense “to destroy or make
something no longer usable,” which would result in their merging.

Navigli [2006] induces a sense mapping between WordNet and the Oxford Dictionary of
English [Soanes and Stevenson, 2003] on the basis of lexical overlaps and semantic relationships
between pairs of sense glosses. WordNet senses which align to the sameOxford sense are clustered
together. Snow et al. [2007] and Bhagwani et al. [2013] extend Navigli’s approach by training
machine learning classifiers to decide whether two senses should be merged. ey make use of
a variety of features derived from WordNet as well as external sources, such as the aforemen-
tioned Oxford-WordNet mapping or the OntoNotes corpus [Pradhan et al., 2007]. While their
method results in an improvement over the baseline, it does require a fair amount of annotated
training data, and the features are largely tailored toward WordNet-specific information types
(e.g., shared antonym relations for two senses). is makes the transferability to resources lack-
ing this information non-trivial. Matuschek et al. [2014] take a more flexible approach and use
their WSL algorithm Dijkstra-WSA [Matuschek and Gurevych, 2013] to create linking-based
clusterings of WordNet and GermaNet against three different LKBs, Wiktionary, Wikipedia,
and OmegaWiki. ey investigate how the different properties of these resources influence the
clusterings, particularly with respect to performance for different parts of speech.

Reflection While it has been shown that clustering can be effective when only considering a
single resource, the benefits of using LLKBs (or more precisely, the sense linkings contained
therein) lie mostly in the increased flexibility. e sense alignment approaches which have been
recently introduced allow to combine several sources of knowledge and their respective rationales
concerning the sense granularities. In this way, it is possible to fine-tune the clusters depending
on the configuration of the end task, and it has even proven to be effective to use different resource
linkings for clustering different parts of speech [Matuschek et al., 2014]. Moreover, the linking
based approach also allows for increased flexibility—while resource-internal clustering strategies
are often heavily tailored toward a particular LKB, recent linking algorithms have been shown to
be applicable to many different kinds of resources.

4.5 SENSE-ANNOTATEDCORPORA

Sense-annotated corpora are important resources for automatic disambiguation methods, in par-
ticular as evaluation datasets, but also as training data for machine learning.
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In a sense-annotated corpus, word occurrences have been manually annotated with sense
identifiers from a particular sense inventory. is annotation task requires determining the mean-
ing of word occurrences given their context, relative to a given set of senses.Many sense-annotated
corpora have been created in the context of the SemEval shared task series.³

Two types of sense-annotated corpora are commonly distinguished: first, lexical sample cor-
pora where only instances of a set of selected lemmas—the lexical sample—are sense-annotated,
and second, all-words corpora where all instances of open-class words (i.e., nouns, verbs, adjec-
tives and adverbs) are annotated.

Provided that an all-words sense-annotated corpus constitutes a sufficiently large⁴ language
sample, it is a valuable source of information on the frequency distribution of the senses from any
particular sense inventory. erefore, sense-annotated corpora also play an important role for
training statistical models.

Previous corpus annotation projects typically focused on a single sense inventory for the
annotation, usually for one very specific purpose. For example, the subcat frames listed in COM-
LEX Syntax have been tagged in a corpus [Macleod et al., 1996] in order to gain information
about the actual frequency of the individual subcat frames in written text. e SemCor corpus is
annotated with the English WordNet [Snyder and Palmer, 2004], while WebCage is annotated
with senses from GermaNet [Henrich et al., 2012]. e so-called FrameNet full text corpus⁵
comprises whole documents that have been annotated with FrameNet frames, i.e., the frame-
evoking word, as well as the frame elements realized in the text. For German, there is a corpus
annotated according to frame semantics called SALSA [Burchardt et al., 2006].

However, also multilayer sense-annotated corpora offering sense-annotation with different
sense inventories in parallel and at multiple layers have gained popularity.

Multilayer sense-annotated corpora go as far back as OntoNotes [Hovy et al., 2006, Prad-
han et al., 2007] and SemLink (PropBank annotated with syntactic structure and with VerbNet
and FrameNet senses) [Palmer, 2009]. Larger and more recent efforts include the Groningen
Meaning Bank [Basile et al., 2012b] and MASC [Passonneau et al., 2012]. Only recently the
sense inventory from the LLKB BabelNet was used to create a sense annotated corpus [Moro
et al., 2014a, Navigli et al., 2013].

It is important to point out that the multilayer annotations of word senses relative to several
sense inventories establish an indirect linking of the participating LKBs at the word sense level.
is follows directly from the observation that annotating words in a corpus with their sense
identifier in a LKB yields a linking between those word occurrences and the senses in the LKB.
us, multilayer sense-annotated corpora link the participating LKBs via the annotated corpus
instances.

³https://en.wikipedia.org/wiki/SemEval
⁴e required size of the text sample depends on the application.
⁵https://framenet.icsi.berkeley.edu/fndrupal/fulltextIndex

https://en.wikipedia.org/wiki/SemEval
https://framenet.icsi.berkeley.edu/fndrupal/fulltextIndex
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Although it is still an open question whether multilayer sense-annotated corpora will pro-
vide a significant benefit in any NLP task, the promising results in the related area of LLKBs
merit and motivate further investigations.

4.6 CHAPTERCONCLUSION
is chapter discussed benefits of using LLKBs in textual unit disambiguation. ere are two
main advantages of using LLKBs.

• e combination of several LKBs as sources of knowledge enables the underlying algorithms
to use richer sense representations, either consisting of aggregated textual information (such
as sense examples or sense definitions), or of a denser network of relations between senses.
is sense enrichment allows better informed automatic decisions about the relationships
between the textual units and their senses in a given document, thus improving both the
precision and the recall of automatic methods.

• Another benefit of using LLKBs for automatic disambiguation is the resulting sense-
annotation of corpora at multiple layers according to different sense inventories. Such mul-
tilayer sense-annotated corpora might be promising language resources, as there are several
projects which construct such corpora manually (see previous section).

Finally, we emphasized that there is no one-size-fits-all LLKB.

• Multilingual tasks (e.g., multilingual WSD) benefit from LLKBs rich in multilingual in-
formation, such as BabelNet or MCR.

• e flexible use of different sense inventories for the purpose of heuristic WSD and sense
clustering is only possible with a LLKB that models the original LKBs as separate lexicons,
such as UBY. is way, the sense links serve as connecting paths to move between different
sense inventories.
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AdvancedDisambiguation
Methods

is chapter presents advanced methods to address the task of disambiguating textual units and
discusses how their performance has been enhanced by employing LLKBs. First, we consider
the machine learning paradigm of distant supervision to generate training data, and second, we
discuss recent work in Deep Learning on continuous vector space models of KBs and LKBs. We
start by introducing the task of Automatic Knowledge Base Construction (AKBC), because it is one
of the core tasks considered both within distant supervision and vector space modeling of KBs.

5.1 AUTOMATICKNOWLEDGEBASECONSTRUCTION
e task of AKBC is to either create a KB from scratch or to extend an existing KB. We will take
a closer look at the latter variant which addresses the ever-recurrent problem of any KB and LKB:
insufficient coverage of entries or information types regarding a given text corpus or application.
Specifically, the main limitation of all disambiguation approaches using a fixed sense inventory
from a LKB is the possibly insufficient sense coverage of the LKB.

AKBC on the foundation of raw texts such as websites or other corpora is immediately
connected to the task of disambiguating textual units: AKBC comprises the subtasks of detecting
instances (also-called “mentions”) of KB entries in raw text, disambiguating the instances relative
to a label inventory given by the KB, and finally extending the KB by new information inferred
from the disambiguated instances.

A typical example of AKBC is the extension of a fact KB by new facts extracted from lin-
guistically preprocessed raw text. Facts in a KB are represented as triples, i.e., a binary relation
and its two arguments (also-called “subject” or “left-hand side” and “object” or “right-hand side”).
For instance, the triple (Stephen Hawking, EducatedAt, Oxford) encodes the relation EducatedAt
which holds between the two arguments Stephen Hawking and Oxford. Assuming that this triple
is missing in a fact KB, the AKBC approach would detect, for example, the sentence Stephen
Hawking graduated fromOxford as a mention of the EducatedAt relation based on the presence of
the two named entities Stephen Hawking and Oxford. ese two entities would be disambiguated
relative to the inventory of (named) entities in the fact KB, while the verb phrase graduated from
would be disambiguated relative to the inventory of relations. Based on such a successful dis-
ambiguation step, a new fact would be inferred from the processed sentence and added to the
KB. It is important to note that the mention detection and disambiguation step relies on linguis-
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tic preprocessing resulting in an enhancement of the raw text, i.e., adding features that allow a
comparison with KB entries; in our example this would be at least tokenizing and named entity
tagging.

e AKBC approach is very similar to Open Information Extraction (OIE) like KnowItAll
[Banko et al., 2007] where the basic idea is to automatically extract natural language statements
and transform them into structured knowledge. In contrast to AKBC, OIE does not necessarily
perform any disambiguation of the extracted statements relative to a KB.

One large-scale AKBC project based on the OIE paradigm is NELL (Never Ending Lan-
guage Learner [Mitchell et al., 2015]). NELL uses the Web as text source, and since its start in
2010 has accumulated a KB of approximately 89 million beliefs with varying levels of confidence
in November 2014.

In projects like the Google Knowledge Vault [Dong et al., 2014], it was discovered that exist-
ing (lexical) KBs can provide invaluable hints for judging the quality of the extracted information
in a supervised learning setup and hence drastically improve the performance.With the recent rise
of large-scale LLKBs, it can be presumed that the broader and richer foundation of information
will also be helpful for this particular task.

In the context of fact KBs (as opposed to lexical KBs), another common approach to AKBC
is to link existing KBs in order to increase the overall coverage of facts—we have discussed ap-
proaches for information matching of this kind in Section 3.1, and of course the problem state-
ment closely resembles that of sense linking between LKBs (Chapter 2). Past approaches to
AKBC, which are most prevalent in context of the Semantic Web, have mostly another one
instance-based matching (for instance, matching “DE” in one KB to “Germany” in the other),
and only recently the need to consistently match the schemata was widely recognized. Conse-
quently, relatively simple rule-based approaches represent the current state-of-the-art in this area
[Galárraga et al., 2013], but it is likely that more sophisticated approaches from the domain of
WSL will be adopted in the future.

5.2 DISTANT SUPERVISION

Distant supervision as a more recent paradigm in semi-supervised learning (i.e., learning from a
combination of labeled and unlabeled data) aligns a typically large KB with text: KB entries are
linked to textual units using a matching criterion. Based on this linking of text and KB, any label
contained in the KB entry can be transferred to the textual unit. is way of automatic training
data generation for machine learning is the primary goal of distant supervision.

5.2.1 METHOD
Figure 5.1 illustrates the general method of distant supervision which we will now introduce in
detail.
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Definition Distant Supervision: Distant supervision is the process of automatically linking en-
tries in a KB with textual units (considered as their instantiations) in a text corpus using a match-
ing criterion (step (1) in Figure 5.1). Such a linking allows the transfer of KB labels to corpus
instances (step (2) in Figure 5.1). For instance, using a LKB and sense IDs as labels, textual units
can automatically be sense-annotated.e twomain stages of distant supervision can be described
as follows.

1. Matching criterion: based on an enrichment of the text corpus using linguistic preprocess-
ing (e.g., POS tagging, lemmatization, dependency parsing, or named entity recognition),
the enriched textual units are compared to KB entries using a matching criterion. Examples
of matching criteria are the simple matching of named entities in the text and in the KB, or
the more complex similarity of corpus sentences and sense examples in a LKB using a sim-
ilarity metric and a similarity threshold that has been calibrated on a labeled development
set. Sometimes corpus instances and KB entries are converted into a common represen-
tation format (e.g., Weston et al. [2013] used a vector representation) in order to better
determine their similarity.

2. Label transfer: if the matching criterion is met, a label from the KB entry can be transferred
to the textual unit. Examples of textual units that can be labeled in this way are sentences
(label: relation name), verb instances (label: sense ID), or verb arguments (label: semantic
role label). Since the result of the label transfer stage is usually a sparse (only few instances
obtain a label) and noisy (the accuracy of the automatic labels is low) labeling, distant su-
pervision relies on huge amounts of unlabeled data. For instance, for distantly supervised
verb sense disambiguation, Cholakov et al. [2014] used about one billion words from the
English ukWAC corpus [Baroni et al., 2009] (containing two billion words).

In summary, distant supervision requires a large-scale KB with good label coverage, huge amounts
of unlabeled data, and possibly also a small amount of manually labeled data in order to calibrate
the threshold of a similarity calculation.

When distant supervision is used for training data generation, there are two different setups
to be distinguished:

• data generation from scratch where the automatically labeled data is the only training data
and

• data augmentation where the automatically labeled data is used to augment a manually
labeled dataset.

5.2.2 OVERVIEWOFWORK INTHIS AREA
Distant supervision has become popular for the task of relation extraction and most previous
works on distant supervision have considered this task; see overview in Table 5.1.
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Figure 5.1: Method of distant supervision.

Mintz et al. [2009] (who introduced the term distant supervision) aligned text and KBs by
recognizing named entities in text and linking them to the corresponding named entities in the
KB. A similar approach had been introduced earlier by Bunescu and Mooney [2007] under the
umbrella term “weak supervision;” they used a small amount of seed knowledge instead of a full
KB to extract relations from text.

Most previous works on relation extraction employ the so-called “distant supervision as-
sumption” which is specific for the task of relation extraction [Riedel et al., 2010]: “If two entities
participate in a relation, all sentences that mention these two entities express that relation.” Using
this assumption for aligning text and KB leads to a certain amount of noise in the automatically
labeled data. Consider as an example the relation Founded and the entities Facebook and Mark
Zuckerberg participating in this relation. According to the matching criterion assumed by the dis-
tant supervision assumption, both sentences (1) and (2) below would be labeled as mentions of the
relation (Mark Zuckerberg, Founded, Facebook), although (2) clearly does not express this relation.

(1): Mark Zuckerberg is co-founder and CEO of the social-networking website Facebook.
(2): Mark Zuckerberg is on Facebook.
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Follow-up research therefore developed various methods to reduce the noise created by us-
ing the distant supervision assumption for relation extraction. For example, Riedel et al. [2010]
introduced the modified expressed-at-least-once assumption where not all sentences which men-
tion the entities participating in particular relation are considered as relation mentions, but only
a subset of at least one sentence; this modification leads to more accurate results. Hoffmann et al.
[2011] and Surdeanu et al. [2012] cast the problem of relation extraction using the distant supervi-
sion assumption as a multi-label, multi-instance problem and suggest models that are specifically
tailored toward this problem, and hence outperform previous related approaches.

Weston et al. [2013] use distant supervision to learn embeddings of relation mentions in
text; their model learns a similarity function that scores the similarity of relation mention embed-
dings and relation embeddings learned from a KB.

Regarding LLKBs, BabelNet has been employed for the acquisition of relation patterns
from text using distant supervision [Krause et al., 2012, Li et al., 2015, Moro et al., 2013]. ey
create an alignment of text and the LLKB BabelNet by means of disambiguating the text relative
to the LLKB using Babelfy as the WSD algorithm. is alignment of text and LLKB is leveraged
for the rule-based acquisition of relation patterns from text, which are then used for rule-based
relation extraction.

Cholakov et al. [2014] present a new variant of distant supervision for the task of verb sense
disambiguation, using the LLKB UBY. e alignment of text and UBY relies on the construction
of a common, pattern-based representation format for corpus sentences and sentence level lexical
information from UBY, such as sense examples and predicate argument structure information.
Cholakov et al. [2014] experimentally evaluat the effect of varying the amount of sense links used
to generate training data for WordNet WSD. ey use the automatically labeled data to train
WSD classifiers and their results demonstrate that increasing the amount of sense links improved
the coverage of the training data and the performance of the WSD classifiers.

Hartmann et al. [2016] develop a distant supervision approach for SRL using UBY and
SemLink as KBs. First, they generate sense-labeled data based on UBY, then they extend these
to role-labeled data using SemLink. An evaluation on several FrameNet SRL datasets shows that
their approach for training data generation is able to generalize across domains and languages.

Table 5.1 gives an overview of previous work on distant supervision according to the tasks
considered.

Reflection While distant supervision has become popular for the task of relation extraction—
sometimes it is even used as a synonym for the “distant supervision assumption” in relation
extraction—it is important to realize that the method of aligning a KB with text is much more
general and can be used for a wide range of different tasks.

For other tasks than relation extraction, the type of KB and the matching criterion used
are typically different. In particular, the type of knowledge a KB offers influences the choice
of the matching criterion. For instance, we have seen that LKBs rich in sentence level lexical
information, such as sense examples, can naturally be combined with a similarity metric.
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Table 5.1: KBs used in distantly supervised approaches grouped by the task

Work KB Task

Mintz et al. [2009] Freebase English relation extraction

Riedel et al. [2010] Freebase English relation extraction

Ho� mann et al. [2011] Freebase English relation extraction

Surdeanu et al. [2012] Freebase English relation extraction

Weston et al. [2013] Freebase English relation extraction

Li et al. [2015] Freebase, BabelNet English relation extraction

Cholakov et al. [2014] UBY English WSD (verbs)

Hartmann et al. [2016] UBY, SemLink English and German SRL (verbs)

Cholakov et al. [2014] show that linked senses increase the overall percentage of text that
could be automatically aligned with the KB, which is due to the enriched sense representations
aggregating many different instantiations of the same lexical information; this higher variability
increases the percentage of text instances that are similar to KB entries and thus improves the
performance of a classifier trained on the automatically labeled text.

5.3 CONTINUOUSVECTORSPACEMODELSOFKBS
Continuous vector space models of knowledge bases moved into the focus of research in the con-
text of learning low-dimensional dense vector representations of words from large amounts of
text [Bengio et al., 2003, Levy et al., 2015, Mikolov et al., 2013, Pennington et al., 2014],
which are also-called word embeddings. Such word embeddings capture semantic and syntactic
properties of words, i.e., the word embeddings of semantically or syntactically similar words are
also close to each other in the vector space. ey were originally developed as a neural language
model [Bengio et al., 2003], for which a more efficient and nowadays widely used computation
method—known as word2vec—was developed by Tomas Mikolov [Mikolov et al., 2013]. Levy
and Goldberg [2014] showed that one variant of word2vec (skip-gram with negative-sampling)
is implicitly factorizing a particular variant of the word-context matrix, which is well known from
traditional vector representations of text as described in Section 3.3.2.

Similar to word embeddings which are trained on text, Vector Space Models (VSMs) of
KBs (also-called KB embeddings or structured embeddings) are learned from large KBs and yield
distributed representations of the textual units (e.g., words or phrases) present in a KB. KB em-
beddings have mainly been used in the context of distantly supervised relation extraction for au-
tomatic knowledge base completion, a task closely related to AKBC. Apart from this particular task,
KB embeddings can be used as features in machine learning instead of or in addition to word or
phrase embeddings learned from text, e.g., in deep neural networks.
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5.3.1 METHOD
KB embeddings map the knowledge present in a KB to a low-dimensional vector space. In con-
trast to the traditional vector representation introduced in Section 3.3.2, which is sparse and
high-dimensional, KB embeddings are dense vectors with a low dimension, e.g., ranging from
50 to several hundred. Depending on the kind of knowledge that is provided in a KB and that is
to be captured by the VSM, different variants of VSMs have been developed.

Definition Continuous Vector Space Model of KB: Most VSMs of KBsmodel a KB as consist-
ing of a set of entities and a set of relations between them. Entities might be concepts in an ontology
(e.g.,MarkZuckerberg,Facebook) or word senses in a LKB (e.g., tree, oak), relations might be either
ontological relations (e.g., Founded) or sense relations, such as hyponymy (e.g., oak is a hyponym
of tree). Two entities e1; e2 related via a relation r form a relation triple .e1; r; e2/. e set of rela-
tion triples constitutes a knowledge graph where nodes are entities and edges are relations between
them. e knowledge graph model of KBs matches not only fact databases, but also LKBs, since
the word senses can be viewed as entities related by sense relations or other relations.

KB embeddings are learned from large KBs using a similar training regime as in algorithms
for learning word embeddings from text: the overall training objective is to arrive at a vector
representation where vectors for entities that are close in the knowledge graph are also close in
the vector space. For training, existing triples in the knowledge graph are considered as positive
examples, and random samples of the non-existing triples of entities and relations as negative
examples.

5.3.2 OVERVIEWOFWORK INTHIS AREA
Previous research has developed a large variety of VSMs for learning embeddings of triples rep-
resenting facts. erefore, we start by summarizing models that consider fact KBs, also including
KB embeddings that are jointly learned from text and from KBs. en, we discuss VSMs that
specifically consider LKBs, such as WordNet.

Fact KBs Embeddings of fact KBs have mostly been developed for the purpose of KB comple-
tion (a subtask of AKBC), in particular, for adding new relations between entities by leveraging
existing relations between entities in the KB. Most previous works in this area have performed
their experiments on Freebase, some also used the subset of WordNet consisting of noun senses.
For the experimental evaluation of the KB embeddings, the task of link prediction (i.e., relation
prediction) is prevailing, but entity prediction and triple classification are sometimes performed
as well. An overview is given in Table 5.2.

Guo et al. [2015] provide a review of previous approaches to learning KB embeddings and
identify several commonalities with and differences to previous approaches. In order to represent
relation triples, previous VSMs of KBs consider entity embeddings, as well as relation embed-
dings; relations are represented as operators in the vector space, taking the entity embeddings as
arguments. ere are differences regarding the definition of the relation operator: it can be for-
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malized as a matrix [Bordes et al., 2011], a vector [Bordes et al., 2013], or a tensor [Socher et al.,
2013].

Yang et al. [2015] introduce a generalized model that unifies previous multirelational em-
bedding models by Bordes et al. [2013] and Socher et al. [2013] under a common framework.
ey evaluate their model using WordNet and Freebase on the link prediction task. e KB em-
bedding presented by Guo et al. [2015] additionally includes a notion of semantic smoothness
which exploits the semantic category of entities, i.e., entities having the same semantic category
are close in the embedding space. Ji et al. [2015] develop an embedding model that uses two
vectors for each entity and relation, one represents the meaning of an entity or a relation, the
other vector is used to construct a mapping matrix for each entity-relation pair which represents
a relation-aware projection of entities into the relation space.

More recently, various works have introduced models that learn relation paths, rather than
only direct relations between entities. Guu et al. [2015] introduce a compositional training objec-
tive that improves the modeling of relations paths and can be applied to the class of composable
VSMs of KBs, including, e.g., the TransE model by Bordes et al. [2013]. In their experiments,
they use WordNet and Freebase and evaluate on path query answering and knowledge base com-
pletion. Neelakantan et al. [2015] use a recurrent neural network to construct vector representa-
tions for sequences of relations of any length, and thus are also able to predict new relations paths.
Luo et al. [2015] present a model that explicitly models relation paths of length two, i.e., paths
that share a common bridging entity.

Fact KBs and Text Another line of research in VSMs for KB completion also takes into account
text as a source of new relations that can be added to the KB. is is motivated by the observation
that KB completion approaches fail when the majority of facts are missing for a particular relation,
e.g., facts for the place of birth relation are missing for 71% of all people included in FreeBase
[West et al., 2014]. Table 5.3 provides an overview of these approaches, which learn embeddings
of both text and the KB, some using a joint modeling approach.

Weston et al. [2013] learn embeddings of a KB and embeddings of relation mentions in
text separately, but combine the embeddings at prediction time when relations are predicted.
Riedel et al. [2013] develop a joint learning approach to embed text and Freebase into the same
low dimensional space. e approach is based on extensions to probabilistic models of matrix
factorization and collaborative filtering. ey represent their probabilistic knowledge base as
a matrix with entity-entity pairs in the rows and relations in the columns. Rows come from
running cross-document entity resolution across pre-existing structured databases and textual
corpora. Columns come from the union of surface forms and DB relations.

Toutanova et al. [2015] learn a joint embedding model for KB entities and relations and
relation mentions in text, which maps them to the same vector space. ey use a convolutional
neural network to derive continuous vector representations for relation mentions in text. Textual
patterns are generated from dependency parsed text using a (string) sequence of words and depen-
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dency relations. e patterns are fed into a convolutional neural network which is trained jointly
with the model for entities and relations from the KB. ey evaluate their model on Freebase
annotated with textual relation mentions. Zhong et al. [2015] jointly embed text and KB entities
and relations using an alignment model which combines embeddings based on text descriptions
of entities with entity embeddings based on the KB structure. For any particular entity, this align-
ment model makes sure that both kinds of embeddings are close in the vector space. is VSM,
which is evaluated using Freebase as KB and Wikipedia as text corpus, can be used for any KB
providing text descriptions for entities, e.g., Wikipedia.

Lin et al. [2015] develop a model which represents relation paths via semantic composition
of relation embeddings and additionally employs a mechanism for measuring the reliability of re-
lation paths. In the evaluation, they demonstrate the benefits of applying their KB embeddings in
combination with text in a distant supervision setting, considering the task of relation extraction.

Table 5.2: Vector space models of fact KBs. Approaches are grouped by KB and task considered, and
whether the approach also takes relation paths into account.

Work KB Paths Task

Bordes et al. [2011] Freebase, WordNet no Link prediction

Bordes et al. [2013] Freebase, WordNet no Link prediction

Socher et al. [2013] Freebase, WordNet no Link prediction

Yang et al. [2015] Freebase, WordNet no Link prediction

Guo et al. [2015] NELL no Link prediction

Ji et al. [2015] Freebase, WordNet no Link prediction, triple classi! cation

Guu et al. [2015] Freebase, WordNet Link prediction

Neelakantan et al. [2015] Freebase, WordNet yes Link prediction

Luo et al. [2015] NELL yes Link prediction, triple classi! cation

Table 5.3: Vector space models considering both fact KBs and text. Approaches are grouped by KB
and task considered, and whether the approach also takes relation paths into account.

Work KB Paths Task

Weston et al. [2013] Freebase no Relation extraction

Riedel et al. [2013] Freebase no Relation extraction

Toutanova et al. [2015] Freebase no Link prediction

Lin et al. [2015] Freebase yes Link prediction, Relation extraction
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Lexical KBs Only recently, embedding models have been developed that explicitly make use of
lexical information present in LKBs, as opposed to fact-like information given by relation triples
involving mostly named entities. Table 5.4 lists these works.

A central information type in LKBs are word senses, and most approaches to learning word
embeddings do not distinguish between different word senses. Cheng et al. [2014] compare sense-
disambiguated word vectors to the ambiguous word embeddings on the task of constructing vector
representations of longer phrases or sentences from their component words in a compositional
way. eir experiments distributional-disambiguated word vectors can possibly improve compo-
sitional methods for distributed semantics. It has to be noted though that they applied word sense
induction to compute the sense disambiguated embeddings.

A straightforward approach to learning embeddings of word senses introduced by Iacobacci
et al. [2015] relies on large amounts of automatically sense-annotated text and makes use of an
existing program for creating word embeddings from text. Iacobacci et al. [2015] employ Babelfy
to perform WSD and entity linking, i.e., word tokens in a large corpus are concatenated with
their BabelNet sense identifier, and feed the modified text into the word2vec tool¹ [Mikolov et al.,
2013] and thus obtain sense embeddings. Evaluated on several word similarity datasets, as well
as on a relational similarity dataset [Jurgens et al., 2012], the sense embeddings outperform word
embeddings, especially when the similarity computation takes an additional weighting factor into
account which considers the vicinity of the two senses in the BabelNet graph.

Rothe and Schütze [2015], on the other hand, developed an embedding model for Word-
Net synsets and senses that explicitly accounts for the structure inherent in LKBs. Specifically,
they build their model upon the assumption that words are the sum of their senses, and synsets
(sets of synonymous senses) are the sum of their participating senses. ese assumptions are for-
malized as constraints and used for learning the embeddings from the LKB WordNet.

Faruqui et al. [2015] developed a graph-based learning technique for retrofitting pretrained
word embeddings to relation graphs derived from the LKBs WordNet, FrameNet, and from the
Paraphrase Database (PPDB).² While their method does not aim to learn word sense embeddings,
it produces semantically enriched word embeddings using relational information from several re-
sources. e intuition behind retrofitting is to move embeddings of word types related in any
of the resources closer together. As a baseline for comparison, they used a different kind of en-
riched word embeddings where information from LKBs is incorporated during training (e.g.,
[Yu and Dredze, 2014]). Evaluated on several tasks, including word and relational similarity,
their retrofitted word embeddings yielded the strongest and most consistent improvements for
the PPDB, followed by WordNet. FrameNet does not perform as well and even leads to worse
performance; this is attributed to the fact, that FrameNet frames contain semantically more dis-
tant senses than WordNet synsets or pairs of words marked as paraphrases in the PPDB.

¹http://code.google.com/p/word2vec/
²e PPDB [Ganitkevitch et al., 2013] is a semantic resource containing more than 220 million paraphrase pairs of English.

http://code.google.com/p/word2vec/
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e embedding model by Wang et al. [2015] considers dependency parsed text distinguish-
ing between different dependency relations, as well as relational information extracted from sense
definitions (i.e., glosses) in a machine readable dictionary (they use the Online Plain Text En-
glish Dictionary). Specifically, they use the defining relation and its inverse, which is derived from
sense definitions containing the headword and a defining word (e.g., one sense of the headword
apple might have the sense definition an apple is a fruit). Both kinds of embeddings are eval-
uated on four word similarity datasets, showing consistent improvement compared to previous
embeddings of dependency parsed text, and to embeddings learned with word2vec on raw text.
Considering the fact that the embeddings of lexicographic relations have been created using only
one dictionary, even better results might be possible when using LLKBs which allow aggregation
of glosses from several resources for every sense.

Hermann et al. [2014] develop an embedding model for FrameNet frames using a de-
pendency parsed corpus annotated with FrameNet frames. For each frame verbalization, their
model builds a structured vector that has slots (i.e., blocks) for all dependents (i.e., dependency
types) given in the dependency relation tagset. e vector for a particular predicate instance and
its context is then constructed by taking the dependent heads of the predicate instance and insert-
ing their word embeddings into these slots. Trained on a frame-annotated corpus, their model
outperforms previous works on the task of FrameNet frame identification (a verb sense disam-
biguation task), as well as on the task of FrameNet-style SRL when combined with a standard
argument identification approach.

Table 5.4: Vector space models of LKBs grouped by KB and task considered, and whether the ap-
proach also takes text into account

Work KB Text Task

Hermann et al. [2014] FrameNet yes FrameNet SRL

Wang et al. [2015] MRD yes Word Similarity

Rothe and Schütze [2015] WordNet no WSD

Faruqui et al. [2015] WordNet, FrameNet, 

PPDB

no Several tasks, including word and

relational similarity

Iacobacci et al. [2015] yes word and relational similarity

Reflection So far, the benefit of using linked senses in VSMs of KBs has been shown for the
tasks of word similarity and relational similarity, using an approach that relies on large amounts of
sense-annotated texts [Iacobacci et al., 2015]. It would be interesting to see, if the use of LLKBs
in any of the other approaches discussed in Section 5.3.2 can lead to performance gains.

Compared to approaches considering fact KBs, there are fewer VSMs of LKBs, which
might be due to the fact that the former play an important role in real-world applications, such
as question answering. e benefit of using LKBs in NLP systems, on the other hand, is often
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not clearly visible and requires specialized knowledge about LKBs, which we hope to convey in
this book.

5.4 CHAPTERCONCLUSION
is chapter introduced and discussed two advanced disambiguation methods: distant supervi-
sion, a paradigm in semi-supervised learning, and continuous vector space models of KBs, a tech-
nique in representation learning. Since especially the latter method is part of the rapidly evolving
research in the field of Artificial Intelligence (see, e.g., the discussion about the “Deep Learning
Tsunami” by Manning [2015]), our discussion of work in this area is certainly incomplete and
should be understood as a partial snapshot of the state-of-the-art in October 2015.

Although there is almost no prior work yet on learning KB embeddings from LLKBs (as
of October 2015), we believe that large-scale LLKBs, such as UBY or BabelNet, are a particularly
promising type of KB for learning embeddings, mainly due to their greatly enhanced coverage.
erefore, we tried to capture previous works that are most relevant for future research on VSMs
of LLKBs.

As the majority of the currently developed deep neural network architectures rely on labeled
training data, we believe that the combination of distant supervision using rich knowledge sources
such as LLKBs on the one hand, and VSMs of LLKB employed as features, on the other hand,
is a particularly promising line of future research.
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Multilingual Applications
Another use case for LKBs are multilingual applications. is chapter covers two examples: mul-
tilingual semantic relatedness and computer-aided translation.

6.1 MULTILINGUAL SEMANTICRELATEDNESS

Calculating the semantic similarity or relatedness of words or larger text units, such as sentences, is
a core task for many NLP applications. For instance, it is a component in approaches for text reuse
detection [Bär et al., 2012], textual inference [Zaenen et al., 2005], or paraphrasing [Androut-
sopoulos and Malakasiotis, 2010]. ere are numerous datasets—both monolingual and cross-
lingual ones—to test the performance of semantic similarity or relatedness calculation. While
most of these datasets focus on words without any context, what is actually captured by the simi-
larity scores is the similarity or relatedness of particular senses evoked by these words [Erbs et al.,
2014].

In the rest of this section, we will use “semantic relatedness” as the broader term also cover-
ing “semantic similarity”.¹ Semantically related words can thus be synonyms, hyponyms, topically
related words (e.g., Turing, computability), or based on any other (usually semantic) relation (e.g.,
singing, dancing or movie, star).

Due to their concise and structured description of concepts (with sense definitions, sense re-
lations, and sense examples), LKBs offer a natural way of deriving the semantic relatedness of word
senses, and in the past, single LKBs such as WordNet [Patwardhan and Pedersen, 2006, Pile-
hvar et al., 2013], Wiktionary [Zesch and Gurevych, 2010, Zesch et al., 2008a], and Wikipedia
[Medelyan et al., 2009, Milne and Witten, 2008] have been used for this task with great success.

ere are several works that demonstrate the beneficial impact of LLKBs on the perfor-
mance of relatedness calculation in the more general case of cross-lingual relatedness where the
semantic relatedness of a pair of words in two languages is determined. is multilingual exten-
sion of semantic relatedness could not successfully be tackled before, because single LKBs lacked
sufficient coverage.

An early approach by Agirre et al. [2009a] used the MCR to compute the cross-lingual
similarity of words and obtained initial promising results.

¹e difference between semantic similarity and relatedness can be explained using WordNet [Agirre et al., 2009a]: seman-
tic similarity refers to senses (as members of synsets) that are close in the WordNet graph, whereas semantic relatedness
corresponds to the observation that there exists a relation (this might be any relation) between two senses.
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Meyer and Gurevych [2011] evaluated a multilingual Wiktionary-based LLKB called On-
toWiktionary [Meyer and Gurevych, 2012a]² on the tasks of monolingual and cross-lingual verb
similarity. OntoWiktionary combines Wiktionary versions in English and German which were
linked at the word sense level via disambiguated semantic relations and translations, i.e., On-
toWiktionary provides translations between English and German at the sense level, rather than
at the word level as in Wiktionary. eir results show that cross-lingual features based on the
LLKBOntoWiktionary outperform the single LKBsWiktionary andWikipedia, and also a small
LLKB consisting of WordNet and GermaNet linked at the sense level.

Navigli and Ponzetto [2012c] finally demonstrated that the rich multilingual information
available in BabelNet leads to competitive results for a range of monolingual and cross-lingual
word similarity datasets in several languages. eir approach uses BabelNet to construct a mul-
tilingual semantic graph by translating the two input words into all the languages available in
BabelNet. ey experimentally evaluated the effect of varying the number of languages used to
build the multilingual networks and showed that the performance of the semantic relatedness
computation increases with the number of languages used.

We conclude that LLKBs rich in multilingual information can bring about a significant
boost in the performance of cross-lingual semantic relatedness calculation.

6.2 COMPUTER-AIDEDTRANSLATION
In recent years, having documents available in multiple languages has turned out to be an increas-
ingly important requirement for both institutions and individuals, e.g., governments, companies,
or researchers. is raises a high demand for translation tools and resources. Statistical machine
translation (SMT) systems are the predominant way to tackle this issue, but they are usually not
easy to adapt to specific needs as parallel texts for training are not available for many domains.
us, SMT systems are mainly useful during the drafting phase of the translation process, or as
a quick tool for finding translations of a word or phrase. A level of translation quality which is
required for official documents, such as contracts, still requires human editing [Carl et al., 2010,
Koehn, 2009]. SMT systems are not sufficient for this purpose, since it is usually not easy to see
what the translations actually mean and why one alternative is preferable when a probability score
is all that is provided.

To produce translations of higher quality, additional tools and resources are necessary.
Translation Memory systems became very popular for this purpose in the 1990s [Somers, 2003].
ey provide a database of manually validated translations which can be applied if the same or a
similar translation is required. ey can, to some extent, deal with unseen texts via fuzzy match-
ing, but while this approach yields a high precision, it struggles with entirely new content and
is thus not useful in environments where the context changes frequently. More recently, paral-
lel corpora have been used to identify suitable translations in context; for example, through the

²OntoWiktionary is part of UBY.
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Linguee³ service. While this might help to identify the correct translation, pinpointing the exact
meaning can be hard because no sense definitions or any other lexicographic information is avail-
able. Moreover, the lack of sufficiently large parallel corpora, especially for uncommon language
pairs, is also problematic.

6.2.1 OVERVIEWOFWORK INTHIS AREA
Consequently, it has been argued that multilingual lexical resources such as bilingual dictionaries
or multilingual wordnets are required to provide additional knowledge. Using the information
contained in those multilingual resources makes it possible to manually or (semi-)automatically
determine if a translation is appropriate in context and to perform corrections. is is especially
true for less common language pairs [Declerck et al., 2012, Mörth et al., 2011]. Collaboratively
constructed resources such as Wiktionary or OmegaWiki allow to easily distinguish between
different word senses and provide a vast amount of current lexicographic information to help
identify a good translation, especially for smaller languages [Meyer, 2013], as the large body
of collaborators can quickly adapt to new language phenomena like neologismsm while at the
same time ensuring a remarkable quality—this phenomenon known as the “wisdom of crowds”
[Surowiecki, 2005] has already been mentioned before. Expert-built resources, on the other hand,
often provide additional, rather special information types. For example, WordNet focuses on
synsets and their taxonomy, but mostly disregards syntactic information, which is in turn the
focus of VerbNet. However, their enormous building effort is the reason why for many smaller
languages such resources remain small or do not even exist. is is why a combination of both
collaborative and expert-built resources is a promising endeavor to combine both their strengths.

Human translators traditionally utilize monolingual and bilingual dictionaries as a refer-
ence. Dictionaries provide many different kinds of lexicographic information, such as sense def-
initions, example sentences, collocations, idioms, etc. ey are well crafted for being used by
humans, but using them computationally poses a great challenge. Although machine readable
dictionaries can be processed automatically, computers are often challenged to properly interpret
the structure of an entry or resolve ambiguities that are intuitively clear to humans.

e great success of the Princeton WordNet motivated the creation of a large number
of multilingual wordnets, such as the already discussed EuroWordNet [Vossen, 1998], BalkaNet
[Stamou et al., 2002], MultiWordNet [Pianta et al., 2002], or Open Multilingual Wordnet [Bond
and Foster, 2013].While the nature of these resources seems to perfectly meet the requirements of
computer-aided translation, only few of them gained a size comparable to the English WordNet
or provide as many different information types as dictionaries (such as etymology, pronunciation
or derived terms) due to their time-consuming and costly construction process.

Creating such a resource requires expertise in linguistics, which makes the process expen-
sive and time-consuming, which, in turn, poses significant limitations on resource growth and
update rates. Automatically induced resources based on the output of Open Information Extrac-

³http://www.linguee.com

http://www.linguee.com
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tion (OIE) systems such as KnowItAll [Banko et al., 2007] can be huge and kept up to date at
any time. However, those resources are not sense disambiguated per se and, due to the completely
automatic creation process, limited in their quality.

ere exists a significant amount of work using Wikipedia in the context of cross-lingual
information retrieval for query expansion or query translation [Gaillard et al., 2010, Herbert et al.,
2011, Potthast et al., 2008], and also as a parallel corpus [Adafre and de Rijke, 2006] or as a source
for mining bilingual terminology [Erdmann et al., 2009]. However, it is primarily an encyclo-
pedic resource, which limits the amount of lexical knowledge available for parts of speech other
than nouns. Translators also require lexicographic information types such as idioms, collocations,
or usage examples as well as translations for word classes other than nouns—most importantly
verbs, adjectives, and adverbs. Müller and Gurevych [2009] discuss combining Wiktionary and
Wikipedia for cross-lingual information retrieval, but in this case Wiktionary is also merely used
for query expansion and most of the lexicographic knowledge encoded in it remains disregarded.
is knowledge is essential for translation applications in order to make well-grounded decisions.

Consequently, the usage of large-scale LLKBs was also considered in this area, as they
combine the strengths of the singular LKBs (see Table 6.1). BabelNet [Navigli and Ponzetto,
2012a], for instance, contains not only multilingual information from Wikipedia, but also from
Wiktionary and OmegaWiki. While BabelNet also does not include all information from the
stand-alone resources which might be useful for this application scenario, it additionally provides
automatically added translations for a large amount of languages, which (different from classi-
cal SMT systems) are attached to particular word senses. While BabelNet has not been directly
applied to translation applications, it was successfully used for cross-lingual WSD [Navigli and
Ponzetto, 2012b]. Matuschek et al. [2013] describe the usage of UBY (which also contains the
multilingual LKBs OmegaWiki, Wiktionary, and Wikipedia) for translation applications, how-
ever, they do not present a functional system, which would be the next necessary step to truly
leverage the multilingual knowledge contained therein.

Reflection In general, the usage of LLKBs for translation applications has the following imme-
diate advantages.

• Better coverage as the lexemes and senses from all resources can be considered. is is
generally true for all applications which utilize LLKBs.

• Complementary information such as additional example sentences or context information
for a sense which helps choosing the correct translation.

• Better structured translation results achieved, for instance, by clustering the translations into
the same language for linked senses instead of simply considering all of them in parallel.

• Identical translations in different resources yield combined evidence and thus higher trans-
lation confidence.
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Table 6.1: Comparison of the advantages of different resource types (OIE = Open Information Ex-
traction)

Resource Type Information 

Types

Lexicon 

Size

Usage 

for 

NLP

Update 

Time

Quality

Dictionaries many considerable hard long very high

Wordnets limited small easy long very high

OIE-based many huge easy short low

Wikipedia encyclopedic large medium short high

Wiktionary many large medium short high

OmegaWiki many medium easy short high

BabelNet, UBY many huge easy short high

6.2.2 ILLUSTRATIVEEXAMPLE
To illustrate the advantages of using linked senses, we will consider one example described by
Matuschek et al. [2013] which is taken from the greater context of UBY: the alignment between
Wiktionary and OmegaWiki. Particularly interesting in this case is that, as OmegaWiki is a
multilingual resource by design, there exists a linking to multilingual synsets. is means that
the (disambiguated) translations encoded apply to the aligned Wiktionary senses. is entails
that the correct translation is immediately known once the word sense in the source document
can be correctly identified (either by the user or by automatic word sense disambiguation). A
similar argument also holds for Wiktionary—all linked senses from OmegaWiki benefit from
the additional translations available in Wiktionary. e only disadvantage in this case is that
these are not disambiguated. An illustration of this scenario is given in Figure 6.1.

As an example for the noun bass, the word sense “A male singer who sings in the deepest
vocal range” from OmegaWiki is linked to the sense “A male singer who sings in the bass range”
from Wiktionary. While these two different definitions might themselves be useful for pinpoint-
ing the exact meaning of the term depending on the context, there are a number of further valuable
information sources.

• Wiktionary offers translations into Spanish, Dutch, Bulgarian, Tatar, Finnish, German,
Greek, Hungarian, Italian, Japanese, Russian, and Slovene, while OmegaWiki addition-
ally encodes translations into French, Georgian, Korean and Portuguese. Only the Spanish
translation bajo and the Italian translation basso are included in both. us, the link directly
yields a significantly broader range of translations than either resource alone.

• OmegaWiki offers sense definitions of this word sense in Spanish and French which
are useful for a translator fluent in one of these languages. Moreover, the Spanish sense
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Sense Linking

Barsch (de)

Wiktionary: Ambiguous translations OmegaWiki: Disambiguated translations

Bass (de)

bass (fish) bass (fish)

bass (voice) bass (swe)

...

 (jp)

...

Figure 6.1: Illustration of the sense linking betweenWiktionary and OmegaWiki. As the translations
in OmegaWiki are unambiguous, they directly apply to the aligned Wiktionary sense. Although this
is not the case for the translations in Wiktionary, they still offer additional translation options. e
ambiguity in Wiktionary is exemplified by the arrows pointing from German Barsch and Bass to both
English senses of bass—there is no explicit link to the correct sense, only to the lexeme.

definition from OmegaWiki can directly be used to identify the correct sense of the Span-
ish translation, which is not disambiguated in Wiktionary.

• Wiktionary also offers additional information not included in OmegaWiki, such as ety-
mology, pronunciation, and derived terms.

Table 6.2 summarizes the information that becomes available through the linking between Wik-
tionary and OmegaWiki for bass.

Table 6.2: Information gain through the linking for one sense of bass

Resource Translation 

Languages

Available 

De� nitions

Additional 

Information 

Types

Wiktionary 12 1 5

54

OmegaWiki 6 3 0

Combined 16

While this is only an illustrative example, Matuschek et al. [2013] provide further statistics
about both single resources as well as their combination. Even with only 2 languages and 2 re-
sources considered, they obtain 1,600,000 translations. For the whole resource UBY, the number
is an order of magnitude higher, due to the integration of Wikipedia and further cross-lingual
links between monolingual resources.
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6.3 CHAPTERCONCLUSION
In this chapter, we presented two examples of multilingual applications that benefit from LLKBs:
multilingual semantic relatedness as a fundamental task inNLP applications, and computer-aided
translation.

We have seen that the use of BabelNet as a LLKB especially rich in multilingual informa-
tion leads to a performance boost in multilingual semantic relatedness by making use of infor-
mation from all languages in BabelNet jointly. Computer-aided translation, a use case directly
involving humans, was illustrated with the LLKB UBY. We conjecture that UBY is better suited
for this use case than BabelNet, because human translators usually appreciate transparency, e.g.,
regarding the provenance of the translations. UBY is designed in a way that preserves the inte-
grated LKBs and the source of the translations, and thus offers more transparency as BabelNet.

ere are many more multilingual applications in the context of LLKBs waiting to be ex-
plored. For example, the application of multilingual relatedness in end-to-end tasks, such as mul-
tilingual multi-document summarization might be an interesting direction for future research.
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Interfaces and Tools
7.1 EXPLORATION INTERFACES
While easy programmatic access to linked LKBs is crucial for employing them inNLP tasks (as we
will explain in Section 7.3), the initial step of determining their added value for particular tasks is
a challenge in itself, because it is not intuitively clear what kind of information is available in what
resource and how it can be related and exploited by human users and machines. In other words,
what is required are tools for qualitative and exploratory examination of the linked resources.

Web interfaces have been long used for accessing electronic dictionaries, such as the Oxford
Dictionary of English or the American Heritage Dictionary [Lew, 2011]. ese interfaces have also
largely influenced the development of web interfaces for LKBs, such as the ones for WordNet,
FrameNet, Wiktionary, orDANTE [Kilgarriff, 2010] which directly built upon the dictionary in-
terface models. Two other examples for accessing WordNet are Visuwords¹ and WordNet explorer²
that allow browsing of the WordNet synset structure. Kunze and Lemnitzer [2002] present a
similar interface for browsing GermaNet. An example for a cross-lingual graph-based interface is
Visualesaurus³ which shows related words in six different languages. e Korp interface allows
easy access of the Swedish Språkbanken [Borin et al., 2012], while the VisDic interface of the
BalkaNet project [Horak and Smrz, 2004] allows to not only browse the contained information,
but also to edit it, which makes it a rare exception in the area of expert-built resources.

Most of these interfaces, however, have been designed in adherence to a specific, single
LKB, and only a few are able to display information from multiple heterogeneous sources. e
majority of them are limited to show preformatted lexical entries one after another without mak-
ing any attempt to connect them. Popular examples are Dictionary.com⁴ and eFreeDictionary.⁵
Similarly, the DWDS interface [Klein and Geyken, 2010] displays its entries in small rearrange-
able boxes. e Wörterbuchnetz [Burch and Rapp, 2007] is an example of a web interface that
connects its entries by hyperlinks—however, only at the level of lemmas and not word senses.

Interfaces to collaboratively constructed resources have been discussed in detail in Sec-
tion 1.2, as for them the construction paradigm and the interfaces are intimately connected—the
Wiki interfaces directly shape the way the knowledge is structured, so that interface and repre-
sentation format essentially become one. While there have been different attempts to make user

¹http://www.visuwords.com
²http://faculty.uoit.ca/collins/research/wnVis.html
³http://www.visualthesaurus.com
⁴http://www.dictionary.com
⁵http://www.thefreedictionary.com

http://www.visuwords.com
http://faculty.uoit.ca/collins/research/wnVis.html
http://www.visualthesaurus.com
http://www.dictionary.com
http://www.thefreedictionary.com
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interfaces more convenient and accessible, the Wiki markup has still prevailed as the most widely
accepted means of displaying the content due to its flexibility.

In general, however, most work in the past focused either on the allowing access to single
resources (or a single type of resource), or on the integration of several resources in proprietary
and heterogeneous formats. On top of that, complete UI access was rarely provided for integrated
resources, which follows immediately from the heterogeneous ways in which access to the single
LKBs has been realized. As a result, the comparative exploration of different LKBs, and in par-
ticular, of sense-aligned LKBs in order to assess their quality and usefulness for particular tasks
is not easy in practice; neither is their orchestrated usage. is makes it hard for the community
to exploit them on a large scale, diminishing the impact that these projects might achieve.

To alleviate this, the two outstanding LLKB projects we have discussed earlier, Babel-
Net and UBY, have also put significant work into this aspect of the resources, in order to make
the extensive amount of knowledge contained therein accessible to a wider audience. e Babel-
NetXplorer [Navigli and Ponzetto, 2012e] enables access to the semantic network in BabelNet in
different ways. e starting point is usually a single lemma, for which a list of different senses
is returned, including a definition and pictures if available (Figure 7.1). As BabelNet bakes in-
formation from different sources into Babel Synsets, it is not immediately visible which piece of
information comes from which source at this point.

Figure 7.1: A list of concepts in the BabelNetXplorer.
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A much more detailed view becomes available once a single sense is selected (Figure 7.2).
Now, information such as translations, pronunciation, and categories are visible, and in this view
it is also possible to reveal the sources of the single information items. is perspective is also
directly linked to the Babelfy interface [Moro et al., 2014b], which allows to directly perform
WSD with BabelNet as a sense inventory.

Figure 7.2: A single concept in the BabelNetXplorer.

e core element of BabelNetXplorer is the flexible graphical view, which offers a stream-
lined way to easily navigate the full BabelNet graph, and also allows jumping back to the text-
centered view of a single concept in order to explore further (Figure 7.3). e semantic graph
of BabelNet is also the foundation of BabelRelate [Navigli and Ponzetto, 2012c], a toolkit for
calculating semantic relatedness which is also anchored in the same ecosystem.

An initial version of the web interface to UBY [Gurevych et al., 2012b] offers a graph-based
visualization of sense linkings between the integrated LKBs. Different senses of the same lemma
which are linked across LKBs are grouped via alignment nodes so that the source of the infor-
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Figure 7.3: e graph view of the BabelNetXplorer.

mation as well as the richness of the sense representation becomes apparent via descriptions and
color-coding.is allows exploring and assessing the individual senses across resource boundaries.
Accompanying this, there is also a textual view for examining lexical information in detail. For a
given lemma, all senses available in UBY can be retrieved and the information attached to them
can be inspected. In this detailed view, it is also possible to navigate to other senses by following
the hyperlinks, e.g., for following sense alignments across resources or semantic relations within
a LKB. Additionally, the user can compare any two senses in a detailed side-by-side view. For
linked senses, this enables the immediate discovery and examination of complementary lexical
information from different LKBs. As the information is presented in a uniform way (due to the
standard-compliant representation of UBY), a user can easily compare the information available
from different LKBs without having to use different tools, terminologies, and UIs.

e visualization of sense linkings in the initial version of theUBYweb interface was subject
to a subsequent analysis and redesign in collaboration with a visualization expert [Eckle-Kohler
et al., 2014]. is redesign was the result of a detailed requirements analysis with respect to the
targeted user groups in the two fields of NLP and Digital Humanities. A particular issue of
the initial graph-based visualization was a lack of scalability for lemmas with a large number
of senses and sense links. e final, revised version of the visualization component uses cluster-
based design, which groups linked senses within a cluster enclosed in a circle, and orders the
senses inside each cluster according to resources. Figure 7.4 shows the final cluster-based design.
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Figure 7.4: Cluster-based visualization of sense links for the lemma run from the LLKB UBY.

Note that for all interfaces considering linked or merged resources, interoperability issues
have to be addressed in a comprehensive way—these issues have been discussed in more detail in
Section 1.3.

7.2 CURATION INTERFACES

Apart from the mere access to LKBs, another point which has recently received additional interest
is their curation—that is, the editing process after the initial creation which aims at correcting
errors and adding new content. For the longest time, this was no issue, as curation of LKBs
was largely a task for a closed group of experts (see Section 1.1), so that the editing process
usually relied on makeshift tools and interfaces, and most often the underlying files were edited
manually. However, with the advent of collaboratively constructed resources, the topic of making
knowledge not only accessible, but also editable, came more into focus. Resources like Wikipedia,
Wiktionary, and OmegaWiki were explicitly designed with the possibility in mind that everyone
can edit them, and the underlying Wiki technology is deeply intertwined with their philosophy,
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most obviously expressed by their names. ese interfaces have been presented in greater detail
in Section 1.2.

In the related field of linguistic corpus annotation, it has been recognized early on that
experts should be able to edit or create content based on user interfaces, as the work load would
be too hard to handle otherwise. While crowdsourcing has also been used in this field [Fossati
et al., 2013], linguistic corpus annotation tasks are still primarily carried out by experts, resulting
in corpora of highly limited size. at is to say, there is currently a wide variety of web-based
annotation tools available for the creation of copora by experts, such as BRAT [Stenetorp et al.,
2012], the Groningen Meaning Bank Explorer [Basile et al., 2012a], WebAnno [Yimam et al.,
2013], and CSniper [Eckart de Castilho et al., 2012], and these tools make the annotation easier
(or possible), but another aspect which has been largely disregarded until recently is themotivation
for contributing to such a project.

Regarding LKBs, it is mostly clear why experts invest the time and resources for LKB cre-
ation, but the motivation for projects such as Wiktionary is a topic of research in itself—which
is outside the scope of this book. Nevertheless, especially for large-scale LKBs, it is now widely
accepted that it is necessary to draw a larger crowd of people which are not per se linguistically
inclined. To this end, one suggestion is to “gamify” the curation, i.e., make the otherwise te-
dious editing process less exhausting by wrapping it into some kind of entertaining, competitive
or otherwise motivating environment. is kind of gamification has already been suggested for
the related areas of crowd-based corpus annotation [Chklovski and Mihalcea, 2002, Seemakurty
et al., 2010, Venhuizen et al., 2013], anaphora resolution [Hladká et al., 2009, Poesio et al., 2013],
paraphrasing [Chklovski and Gil, 2005], term associations [Artignan et al., 2009, Lafourcade and
Joubert, 2010], and query expansion [Simko et al., 2011].

Especially with the involvement of automatic number in the construction of large-scale
LLKBs, which inevitably introduce a certain amount of errors, it is now more necessary than ever
to think about effective corresponding motivational techniques. Attempts using “regular” crowd-
sourcing [Biemann and Nygaard, 2010, Eom et al., 2012, Sarasua et al., 2012] had only very
limited success, so that gamification gains more and more attention. In the context of adding
descriptive labels to images on the web, von Ahn and Dabbish [2004] generate common sense
facts by using a game similar to Taboo. Rzeniewicz and Szymański [2013] extends WordNet with
common-sense knowledge using a questions-based game, and Siorpaes and Hepp [2008] present
a game which aims to classify Wikipedia pages as either categories or individual entities. Dis-
advantages of these suggestions are that they are all based on text interfaces, hence lacking the
attraction of “real” games, and that most often at least two players are required. Vannella et al.
[2014] present pioneering work to alleviate these shortcomings. ey propose two single-player
video games (a top-down shooter and a role-playing game) for validating associations between
concepts, and between concepts and images. ey show that these games are intrinsically mo-
tivating, i.e., no external incentive is required, and that the curation quality is competitive with
non-gaming approaches. Nevertheless, it is clear that such games are very costly in their produc-
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tion, so that flexibility with regard to different LKBs and tasks is necessary to make the effort
worthwhile.

7.3 RESOURCEAPI’S FORTEXTPROCESSING
A further important factor to the success of a LKB in NLP research is a public API (Application
Programming Interface), which facilitates programmatic access. A good example how this can
work is the API for the most popular single resource, WordNet. e Java WordNet Library⁶
is widely used and well developed, as is the Java-based Wikipedia API,⁷ which not only allows
programmatic access to current Wikipedia content, but also to the link structure, discussion pages
and revisions, i.e., past states of articles—this has been widely exploited for different research tasks
[Daxenberger and Gurevych, 2013, Daxenberger et al., 2012]. In the same line of work, similar
APIs for Wiktionary⁸ and OmegaWiki⁹ have been developed. Also for GermaNet, a constantly
updated Java-API¹⁰ exists. All of these APIs are freely available, and they all have been developed
with only one LKB in mind, i.e., they have been carefully created to make the knowledge available
as complete and convenient as possible, with the trade-off of accommodating idiosyncrasies in
formalisms and data formats.

However, the rise of large-scale LLKBs—which has extensively been discussed in this
book—calls for a broader perspective on the programmatic access to these resources. With the
overwhelming amount of information, and also information types, easy access to sense-linked
LKBs is crucial for their acceptance and use in NLP, as only then their full potential can be
leveraged. While single LKBs and their APIs are reasonably well understood, researchers face
the problem of using them in an orchestrated manner. With this in mind, corresponding APIs
have been created for the two most popular LLKBs which we have previously presented: UBY
and BabelNet.

For convenient access to UBY, a Java-based API built around the Hibernate framework
was developed, which allows a quick change between representation formats as required by the
particular application: Java objects, XML, or SQL database entires. e main design principle is
to directly represent instances of the underlying UBY-LMF data model, providing methods for
direct access to their attributes and related objects. On top of this, there exists a large amount
of convenience methods to aggregate information which is related, but spread out over several
classes: this is internally realized via joint database tables which are temporarily stored in memory
after the first access. For instance, it is possible to directly iterate over all lexical entries (and their
senses) with a particular part of speech.

Another important design aspect has been to ensure that the functionality of the individual,
resource-specific APIs (or user interfaces) can be mirrored with the UBY-API. is is meant to

⁶http://sourceforge.net/projects/jwordnet/
⁷http://code.google.com/p/jwpl/
⁸https://code.google.com/p/jwktl/
⁹https://code.google.com/p/jowkl/
¹⁰http://www.sfs.uni-tuebingen.de/lsd/tools.shtml

http://sourceforge.net/projects/jwordnet/
http://code.google.com/p/jwpl/
https://code.google.com/p/jwktl/
https://code.google.com/p/jowkl/
http://www.sfs.uni-tuebingen.de/lsd/tools.shtml
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enable the use of legacy applications with the LLKB UBY. As an example, see the corresponding
UBY-API operations for the most important operations in the WordNet API in Table 7.1. A
notable aspect here is that the naming conventions change, while the content remains the same.
For instance, an IndexWord in WordNet becomes a LexicalEntry in UBY. is harmonization
of the terminology is due to the uniform terminology defined in the UBY-LMF data model. e
true benefit of using such a LLKB, however, only becomes visible when multiple resources are
queried to get a single combined result—demonstrating the increase in lexical and sense coverage,
as well as the enrichment of sense representations based on the sense links.

Table 7.1: Some equivalent operations in the WordNet-API and the UBY-API

WordNet Function UBY Function

Dictionary

getIndexWord(pos, lemma)

UBY

getLexicalEntries(pos, lemma)

IndexWord

getLemma()

LexicalEntry

getLemmaForm()

Synset

getGloss()

getWords()

Synset

getDe! nitionText()

getSenses()

Pointer

getType()

SynsetRelation

getRelName()

Word

getPointers()

Sense

getSenseRelations()

For the other large-scale LLKB, BabelNet, the BabelNet API [Navigli and Ponzetto,
2012d] has been developed, which is specifically tailored toward multilingual usage scenarios.
e API is based on Apache Lucene, which is used for indexing the textual representation of
BabelNet, and it includes several methods to access lexicographic and encyclopedic information
about concepts, the relations between them, as well as translations. A major design goal was to
accomplish complex knowledge extraction tasks with as little code as possible.

Besides that, the BabelNet API is also designed as a framework for multilingual graph-
based lexical disambiguation, i.e., WSD based on the semantic connections found in the LKB. To
this end, the API allows to create and store semantic graphs, and to perform a depth-first search in
these graphs up to a predefined maximum depth. ese paths are stored within a Lucene index for
efficient lookup of those paths starting and ending in a specific synset. Given a set of ambiguous
words as input, the API then looks for their connecting paths and merges such paths within a
single graph to disambiguate them. is process can also be further parametrized to account for
aspects like different edge weights, and the graph nodes can also be scored using a variety of
methods, such as their PageRank value, in turn better leveraging the structure of the underlying
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LKB.is is especially interesting, as theWSD engine generally allows to use resources other than
BabelNet—for instance, this has been tested for WordNet, and as long as the graph structure of
a LKB can be mapped to the corresponding Java classes, a relatively straightforward integration
should be possible.

Finally, a recent trend is to move away from locally stored resources and databases and cor-
responding APIs and instead make the information available in online repositories and through
web services, like in the Linguistic Linked Open Data Cloud which has already been discussed
in Section 1.3. e idea is to abstract away from idiosyncratic data structures and instead to offer
the data via established standards such as HTML and JSON. e foundation for these services
are generic semantic representation models such as lemon [McCrae et al., 2011]. In this way, ac-
cess to the data is possible in any programming language or framework. Many of the resources
discussed in this book (for instance, WordNet, Wiktionary, and Wikipedia) are already available
through the LLOD, and also for integrated resources like UBY efforts have been made to make
them accessible [Eckle-Kohler et al., 2015].

7.4 CHAPTERCONCLUSION
In this chapter, we discussed three distinct aspects of accessing the knowledge contained in
LLKBs.

First of all, we presented an overview of exploration interfaces which allow to manually
assess and inspect the contents of a resource, which is often a crucial entry point for research ef-
forts. In particular, we have described the evolution from makeshift textual interfaces for singular
resources to graphical interfaces for large-scale linked resources which are highly interactive and
responsive and especially enable the exploration of the underlying graph structures.

After that, we also discussed different approaches to curate resources, i.e., edit and correct
them. e vanguard for this direction of research were the Wiki interfaces introduced with re-
sources like Wikipedia and Wiktionary. ese aim to make curation of knowledge accessible to
anyone, and this trend is also likely to affect expert-built resources, which traditionally have been
walled gardens.

Finally, we briefly introduced various APIs for accessing LKBs programmatically, which for
instance can be used for end user applications or more sophisticated data-driven research efforts.
While many of the resources presented in this issue have been made available in this way for
particular programming languages and environments, the inevitable (and exciting) direction for
the future is to offer resources online, in generic representation formats and based on established
standards. e goal is to make them accessible to as many people as possible with the least effort.
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Conclusion andOutlook
8.1 SUMMARY

Linked lexical knowledge bases are nowadays one of the most exciting and promising directions
for knowledge-driven NLP, as they enable the combination of a multitude of different knowledge
types and languages to empower all kinds of applications. In this book, we set out and discussed
the building blocks of LLKBs, the motivations and paradigms for their construction, as well as
methods and applications where the usage of LLKBs brings about particular benefits.

For the introduction and discussion of LKBs in Chapter 1, we started with a definition of
what a lexical knowledge base is, and what different kinds of information LKBs usually contain.
For the discussion of the actual LKBs, we distinguished between expert-built and collaboratively
constructed ones, and put a special focus on the particular information types and structural pe-
culiarities each of them provides. We found that there are many remarkable differences between
LKBs, which is the underlying motivation for combining them in LLKBs. We also covered as-
pects of the standardization of LKBs. is has become an increasingly important topic in the
endeavor to combine resources and make them easily available, as in the past, proprietary file for-
mats and idiosyncratic design decisions were a major obstacle. We introduced the major standard
LMF, which has found many adopters, as well as modeling techniques established in context of
the Semantic Web.

To prepare the discussion of existing LLKBs, we first defined the notion of sense linking
in Chapter 2. Subsequently, we presented the large-scale LLKBs which form the current state-
of-the-art, such as UBY and BabelNet, but also past attempts to create linked resources, which
most often involved only two or three LKBs. ese are especially interesting with regard to the
motivation for their construction, and in a way, they paved the ground for the larger LLKBs
UBY and BabelNet. We also briefly touched on the issue of manual linking of resources, which
is especially relevant for collaborative efforts.

e majority of linkings between resources, however, is created automatically, which is why
we dedicated an entire chapter to linking algorithms (Chapter 3). In order to allow the reader to
fully comprehend the task of WSL and see it in a greater context, we first outlined the common
and distinctive traits with regard to related information integration tasks in NLP and other fields.
ereby, we established that WSL has unique requirements which have to be considered when
designing algorithmic approaches for this challenge. For instance, one usually cannot rely on
well-defined structures or instance-based matching as it is common for ontologies or database
schemata. After that, we presented linking algorithms based on the two perennial information
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sources available in LKBs: textual descriptions of senses (i.e., glosses) and the LKB structure,
induced by semantic relations or links. We discussed the strengths and weaknesses of different
approaches for each of these two general directions, and we also described ideas which combine
similarity-based and graph-based measures for WSL and thereby achieve the best results thus far
across languages and resource types.

To substantiate the motivation for linking different knowledge bases, we presented meth-
ods and applications which benefit from sense linkings in three dedicated chapters. In Chapter 4,
we explained how the disambiguation of textual units, a cornerstone task in NLP, benefits from
the richer structure and combined knowledge in LLKBs, and from clustering fine-grained word
senses by exploiting 1:n links. Next in Chapter 5, we discussed the use of LLKBs in the con-
text of two especially promising knowledge-based approaches in machine learning. ese are the
more recent methods of distant supervision and neural vector space models of KBs. Both methods
play an important role for automatic training data generation based on LLKBs. irdly, we cov-
ered examples of multilingual applications in Chapter 6, in particular computer-aided translation,
where we argued that the collaboratively constructed multilingual LKBs can be valuable sources
of additional translations and other kinds of knowledge for this kind of applications.

Chapter 7 finally considered the question how LLKBs can be explored and edited via inter-
faces, and also how they can be accessed via APIs. While there has been a large amount of work
in these directions in the past, with the rise of tremendously large and complex linked resources
this issue becomes more and more pertinent.

8.2 OUTLOOK
is book attempts to comprehensively cover the current state-of-the-art in the construction and
use of linked lexical knowledge bases, and thus aims to provide a basis for future work in this
area. ere are many avenues for future work, as LLKBs are relatively new knowledge sources
and many researchers in NLP have focused their efforts in the last decade elsewhere, especially
in data-driven and, more recently, in neural networks approaches.

In the rest of this section, we will outline just some of the many possible directions. Most
obviously, as one of dominating themes is creating large-scale sense-linked LKB, a perennial topic
is the consideration of further resource pairs for linking, in order to achieve larger and more
densely linked resources. While, arguably, not all possible links seem sensible,¹ it will continue to
be vital to identify those LKB combinations which might be beneficial for language processing,
and have interesting properties motivating further investigations with regard to the algorithmic
approaches. is involves closer examination of resources that proved challenging to align auto-
matically (such as VerbNet), investigation of resources disregarded thus far and also coverage of
new resources which might emerge in the future, especially automatically created ones, such as
the paraphrase database. For these, their content and structure have to be analyzed with regard

¹For instance, there is no conceivable immediate incentive to link Wikipedia to VerbNet, as they exclusively contain different
parts of speech; however, the perpetual evaluation of possible application scenarios might prove us wrong in time.
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to their applicability within the existing similarity- and graph-based frameworks. is especially
includes further experiments on cross-lingual alignments, a topic which only has been briefly
touched thus far and holds great potential for new combinations.

Regarding extensions of the algorithmic linking approaches, one of the most obvious direc-
tions for progress is the investigation of further similarity measures. Text similarity is a very active
field of research in its own right, and frameworks like DKPro-Similarity [Bär et al., 2013] which
implement a plethora of complex (and also combined) measures might lead to further improve-
ments. But also the integration of similarity measures operating on neural vector representations
seems to be particularly promising in this context.

For graph-based approaches, a main issue to address is the improvement of the graph den-
sity, which is an issue especially for collaboratively constructed resources. Laparra et al. [2010]
discuss a possibility to do this with high precision, where the main idea is to focus on lexemes
with a low degree of polysemy and align them if one of the possible target senses is clearly more
similar to the source sense than the other(s). If recall is still low, more polysemous lexemes can
be examined. Pilehvar and Navigli [2014] adopt and extend this idea of polysemous linking to
further improve their WSL approach we discussed earlier.

A weighting of edges (e.g., based on gloss similarities) has only rarely been considered,
but would be easily applicable. e combination of graph distances and similarities has already
proven effective for the combined approaches, and it would be interesting to see how an even
closer interweaving of these notions might be beneficial. It might also be interesting to investigate
whether integration of joint knowledge from several LKBs might be helpful. For instance, the
information that two senses in resources A and B share a strong resemblance to senses in another
resource C could be expressed by additional features in a machine learning approach. An even
more elaborate idea would be to investigate entirely different graph-based algorithms, e.g., for
matching nodes in bipartite graphs.

Apart from the work directly concerning the linkings, infrastructure-related aspects of
LLKBs such as APIs and interfaces will continue to be an important topic. ere will always be
errors resulting from automatic linking, no matter how precise the algorithm is, so that improved
editing and curation interfaces will be necessary to improve the quality of large-scale LLKBs—we
have discussed gamification as one particularly interesting direction in this area. Another goal is to
enhance the visualization of links across multiple resources to ease the usage, especially for laymen
or for researchers yet unfamiliar with these kinds of resources, for instance, in the humanities.

Regarding the use of LLKBs in NLP, there is a lot of potential for further knowledge-
based applications waiting to be explored, beyond the examples we presented here. For example,
in the field of information retrieval, the usage of KBs is commonly suggested, e.g., for indexing
[Deerwester et al., 1990], for domain-specific information retrieval [Müller andGurevych, 2009],
or semantic relatedness calculation [Otegi et al., 2014]. Also for other semantic tasks such as
recognizing textual entailment, which strongly rely on the semantic relations betweenword senses,
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LLKBs might lead to significant improvements, especially in combination with lexical inference
knowledge automatically extracted from large corpora.
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• LMF Lexical Markup Framework

• LU Lexical Unit

• MFS Most Frequent Sense

• MRD Machine Readable Dictionary

• NLP Natural Language Processing

• OIE Open Information Extraction

• POS Part of Speech

• PPR Personalized PageRank

• RDF Resource Description Framework

• SMT Statistical Machine Translation

• SRL Semantic Role Labeling

• VSM Vector Space Model

• WSD Word Sense Disambiguation

• WSA Word Sense Alignment

• WSL Word Sense Linking



Bibliography
Sisay FissahaAdafre andMaarten deRijke. Finding Similar Sentences acrossMultiple Languages

in Wikipedia. In Proc. of the Workshop “New Text: Wikis and Blogs and Other Dynamic Text
Sources”, pages 62–69, Trento, Italy, 2006. 70

Eneko Agirre and Oier Lopez de Lacalle. Clustering WordNet Word Senses. In Proc. of the Inter-
national Conference on Recent Advances in Natural Language Processing, pages 11–18, Borovets,
Bulgaria, 2003. DOI: 10.1075/cilt.260.13agi. 51

Eneko Agirre and Aitor Soroa. SemEval-2007 Task 02: Evaluating Word Sense Induction and
Discrimination Systems. In Proc. of the 4th International Workshop on Semantic Evaluations,
pages 7–12, Prague, Czech Republic, 2007. DOI: 10.3115/1621474.1621476. 48

EnekoAgirre andAitor Soroa. Personalizing PageRank forWord SenseDisambiguation. InProc.
of the 12th Conference of the European Chapter of the Association for Computational Linguistics
(EACL), pages 33–41, Athens, Greece, 2009. DOI: 10.3115/1609067.1609070. 33, 34, 35,
47

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca, and Aitor Soroa. A
Study on Similarity andRelatedness UsingDistributional andWordNet-BasedApproaches. In
Proc. of Human Language Technologies 2009: e Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL-HLT), pages 19–27, Boulder, CO, 2009a.
DOI: 10.3115/1620754.1620758. 67

Eneko Agirre, Oier Lopez De Lacalle, and Aitor Soroa. Knowledge-Based WSD on Specific
Domains: Performing Better than Generic Supervised WSD. In Proc. of the 21th International
Joint Conference on Artificial Intelligence (IJCAI), pages 1501–1506, Pasadena, CA, 2009b. 47

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa. Random Walks for Knowledge-Based
Word Sense Disambiguation. Computational Linguistics, 40(1), pages 57–84, 2014. DOI:
10.1162/coli_a_00164. 49

Ion Androutsopoulos and Prodromos Malakasiotis. A Survey of Paraphrasing and Textual En-
tailment Methods. Journal of Artificial Intelligence Research, 38(1), pages 135–187, 2010. DOI:
10.1162/10.1613/jair.2985. 67

Guillaume Artignan, Mountaz Hascoet, and Mathieu Lafourcade. Multiscale Visual Analysis of
Lexical Networks. In Information Visualisation, 2009 13th International Conference, pages 685–
690, 2009. DOI: 10.1109/iv.2009.100. 80

http://dx.doi.org/10.1075/cilt.260.13agi
http://dx.doi.org/10.3115/1621474.1621476
http://dx.doi.org/10.3115/1609067.1609070
http://dx.doi.org/10.3115/1620754.1620758
http://dx.doi.org/10.1162/coli_a_00164
http://dx.doi.org/10.1162/coli_a_00164
http://dx.doi.org/10.1613/jair.2985
http://dx.doi.org/10.1613/jair.2985
http://dx.doi.org/10.1109/iv.2009.100


Vikraman Arvind, Johannes Köbler, Sebastian Kuhnert, and Yadu Vasudev. Approximate Graph
Isomorphism. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, Eds., Mathemat-
ical Foundations of Computer Science, vol. 7464 of Lecture Notes in Computer Science, pages 100–
111, Springer, Berlin/Heidelberg, 2012. DOI: 10.1007/bfb0029591. 32

Sue B. T. Atkins and Michael Rundell. e Oxford Guide to Practical Lexicography. Oxford
University Press, Oxford, 2008. 3

Jordi Atserias, Luís Villarejo,GermanRigau, EnekoAgirre, JohnCarroll, BernardoMagnini, and
Piek Vossen. e Meaning Multilingual Central Repository. In Proc. of the 2nd International
Global WordNet Conference, pages 23–30, Brno, Czech Republic, 2004. 26

Mohammed Attia, Lamia Tounsi, and Josef van Genabith. Automatic Lexical Resource Acqui-
sition for Constructing an LMF-Compatible Lexicon of Modern Standard Arabic. Technical
report, Dublin, Ireland, 2010. 18

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. SentiWordNet 3.0: An Enhanced
Lexical Resource for Sentiment Analysis and Opinion Mining. In Proc. of the 7th International
Conference onLanguageResources andEvaluation (LREC), pages 2200–2204, LaValetta,Malta,
2010. 5

Collin F. Baker and Christiane Fellbaum. WordNet and FrameNet as Complementary Resources
for Annotation. In Proc. of the 3rd Linguistic Annotation Workshop, pages 125–129, Suntec,
Singapore, 2009. DOI: 10.3115/1698381.1698402. 19, 26

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. e Berkeley FrameNet Project. In
Proc. of the 36th Annual Meeting of the Association for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics, pages 86–90, Montreal, Canada, 1998. DOI:
10.3115/980845.980860. 6

Timothy Baldwin, Su Nam Kim, Francis Bond, Sanae Fujita, David Martinez, and Takaaki
Tanaka. A Reexamination of MRD-Based Word Sense Disambiguation. ACM Transac-
tions on Asian Language Information Processing (TALIP), 9(4), pages 4:1–4:21, 2010. DOI:
10.1145/1731035.1731039. 47

Satanjeev Banerjee and Ted Pedersen. AnAdapted Lesk Algorithm forWord SenseDisambigua-
tion Using WordNet. In Computational Linguistics and Intelligent Text Processing (CICLing),
3rd International Conference, pages 136–145, Mexico City, 2002. DOI: 10.1007/3-540-45715-
1_11. 47

Michele Banko, Michael J. Cafarella, Stephen Soderland, Matt Broadhead, and Oren Etzioni.
Open Information Extraction from the Web. In Proc. of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 2670–2676, Hyderabad, India, 2007. DOI:
10.1145/1409360.1409378. 56, 70

http://dx.doi.org/10.1007/bfb0029591
http://dx.doi.org/10.3115/1698381.1698402
http://dx.doi.org/10.3115/980845.980860
http://dx.doi.org/10.3115/980845.980860
http://dx.doi.org/10.1145/1731035.1731039
http://dx.doi.org/10.1145/1731035.1731039
http://dx.doi.org/10.1007/3-540-45715-1_11
http://dx.doi.org/10.1007/3-540-45715-1_11
http://dx.doi.org/10.1145/1409360.1409378
http://dx.doi.org/10.1145/1409360.1409378


Daniel Bär, Torsten Zesch, and Iryna Gurevych. Text Reuse Detection Using a Composition
of Text Similarity Measures. In Proc. of the 24th International Conference on Computational
Linguistics, pages 167–184, Mumbay, India, 2012. 67

Daniel Bär, Torsten Zesch, and Iryna Gurevych. DKPro Similarity: An Open Source Framework
for Text Similarity. In Proc. of the 51st Conference of the Association for Computational Linguistics,
pages 121–126, Sofia, Bulgaria, 2013. 87

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. e WaCky Wide
Web: A Collection of Very Large Linguistically Processed Web-Crawled Corpora. Language
Resources and Evaluation, 43(3), pages 209–226, 2009. DOI: 10.1007/s10579-009-9081-4. 57

Valerio Basile, Johan Bos, Kilian Evang, and Noortje Venhuizen. A Platform for Collaborative
Semantic Annotation. In Proc. of the 13th Conference of the European Chapter of the Association
for Computational Linguistics (EACL), pages 92–96, Avignon, France, 2012. 80

Valerio Basile, Johan Bos, Kilian Evang, and Noortje Venhuizen. Developing a Large Semanti-
cally Annotated Corpus. In Proc. of the Eighth International Conference on Language Resources
and Evaluation (LREC 2012), pages 3196–3200, Istanbul, Turkey, 2012. 53

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A Neural Probabilistic
Language Model. Journal of Machine Learning Research, 3, pages 1137–1155, 2003. DOI:
10.1007/3-540-33486-6_6. 60

Luisa Bentivogli, Pamela Forner, Bernardo Magnini, and Emanuele Pianta. Revising the
WordNet Domains Hierarchy: Semantics, Coverage and Balancing. In Proc. of the Work-
shop on Multilingual Linguistic Ressources, pages 101–108, Geneva, Switzerland, 2004. DOI:
10.3115/1706238.1706254. 5

Jacob Berlin and Amihai Motro. Database Schema Matching Using Machine Learning with
Feature Selection. In Proc. of the 14th International Conference on Advanced Information Systems
Engineering, pages 452–466, Springer, Toronto, Ontario, Canada, London, UK, 2002. DOI:
10.1007/3-540-47961-9_32. 31

Tim Berners-Lee, James Hendler, and Ora Lassila. e Semantic Web. Scientific American,
284(5), pages 34–43, 2001. DOI: 10.1038/scientificamerican0501-34. 19

Sumit Bhagwani, Shrutiranjan Satapathy, and Harish Karnick. Merging Word Senses. In Proc.
of the 8th Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-8),
pages 11–19, Seattle, WA, 2013. 52

Eckhard Bick. A FrameNet for Danish. In Bolette Sandford Pedersen, Gunta Nešpore, and
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