Eli Stevens

Luca Antiqa
Thomas Viehmann
Foreword by Soumith Chintala

/lll MANNING

ONTRAINED

MULTIPROCESS MODEL
DATA LOADING % A(
SAMPLE r RATCH TRAINED
DATA TENSORS TENSOR MoDEL P%E&ZIEON
SOURCE / “—}TR?_‘Z‘:T(;NG TORCHSCRIPT)
O B
>|@ /\

0 0 [0

| poen| = = =
DISTRIRVTED TRAINING PRODUCTION

ON MULTIPLE SERVERS/GPUS SERVER

Deep Learning
with Py'lorch

ELI STEVENS, LUCA ANTIGA,
AND THOMAS VIEHMANN
FOREWORD BY SOUMITH CHINTALA

MANNING

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

/l/l Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical development editor: Arthur Zubarev
PO Box 761 Review editor: Ivan Martinovi¢
Shelter Island, NY 11964 Production editor: Deirdre Hiam

Copyeditor: Tiffany Taylor
Proofreader: Katie Tennant
Technical proofreader: Kostas Passadis
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617295263
Printed in the United States of America

http://www.manning.com

To my wife (this book would not have happened without her invaluable
support and partnership),
my parents (I would not have happened without them),
and my children (this book would have happened a lot sooner but for them).

Thank you for being my home, my foundation, and my joy.

—FEli Stevens

Same :-) But, really, this is for you, Alice and Luigi.
—Luca Antiga

To Eva, Rebekka, Jonathan, and David.
—Thomas Viehmann

contents

Sforeword xv

preface xvii

acknowledgments — xix

about this book xxi

about the authors xxvii

about the cover illustration xxviii

PART 1 CORE PYT ORCH. c.cteeeteereeesecnscesccescossccsscescosscsssessoesl

Introducing deep learning and the PyTorch Library 3

1.1
1.2
1.3

1.4

1.5

1.6
1.7

The deep learning revolution 4
PyTorch for deep learning 6
Why PyTorch? 7

The deep learning competitive landscape 8

An overview of how PyTorch supports deep learning
projects 10

Hardware and software requirements 13
Using Jupyter Notebooks 14

Exercises 15

Summary 15

CONTENTS

Pretrained networks 16

2.1 A pretrained network that recognizes the subject of an
image 17

Obtaining a pretrained network for image recognition 19
AlexNet 20 = ResNet 22 = Ready, set, almost run 22
Run! 25

2.2 A pretrained model that fakes it until it makes it 27
The GAN game 28 = CycleGAN 29 = A network that turns
horses into zebras 30

2.3 A pretrained network that describes scenes 33
NeuralTalk2 34

2.4 Torch Hub 35
2.5 Conclusion 37
2.6 Exercises 38
2.7 Summary 38

It starts with a tensor 39

3.1 The world as floating-point numbers 40

3.2 Tensors: Multidimensional arrays 42
From Python lists to PyTorch tensors 42 = Constructing our first
tensors 43 = The essence of tensors 43

3.3 Indexing tensors 46

3.4 Named tensors 46

3.5 Tensor element types 50
Specifying the numeric type with diype 50 = A dtype for every
occasion 51 = Managing a tensor’s dtype attribute 51

3.6 The tensor API 52

3.7 Tensors: Scenic views of storage 53
Indexing into storage 54 = Modifying stored values: In-place
operations 55

3.8 Tensor metadata: Size, offset, and stride 55
Views of another tensor’s storage 56 = Transposing without
copying 58 = Transposing in higher dimensions 60
Contiguous tensors 60

3.9 Moving tensors to the GPU 62

Managing a tensor’s device attribute 63

CONTENTS

3.10 NumPy interoperability 64
3.11 Generalized tensors are tensors, too 65

3.12 Serializing tensors 66
Serializing to HDF5 with h5py 67

3.13 Conclusion 68
3.14 Exercises 68
3.15 Summary 68

Real-world data representation using tensors 70

4.1 Working with images 71
Adding color channels 72 = Loading an image file 72
Changing the layout 73 = Normalizing the data 74
4.2 3D images: Volumetric data 75
Loading a specialized format 76

4.3 Representing tabular data 77

Using a real-world dataset 77 = Loading a wine data tensor 78
Representing scores 81 = One-hot encoding 81 = When to
categorize 83 = Finding thresholds 84

4.4 Working with time series 87

Adding a time dimension 88 = Shaping the data by time
period 89 = Ready for training 90

4.5 Representing text 93

Converting text to numbers 94 = One-hot-encoding characters 94
One-hot encoding whole words 96 = Text embeddings 98
Text embeddings as a blueprint 100

4.6 Conclusion 101
4.7 Exercises 101
4.8 Summary 102

The mechanics of learning 103

5.1 A timeless lesson in modeling 104

5.2 Learning is just parameter estimation 106
A hot problem 107 = Gathering some data 107 = Visualizing
the data 108 = Choosing a linear model as a first try 108
5.3 Less loss is what we want 109
From problem back to PyTorch 110

viii CONTENTS

5.4 Down along the gradient 113
Decreasing loss 113 = Getting analytical 114 = Iterating to fit
the model 116 = Normalizing inputs 119 = Visualizing
(again) 122

5.5 PyTorch’s autograd: Backpropagating all things 123

Computing the gradient automatically 123 = Optimizers a la
carte 127 = Training, validation, and overfitting 131
Autograd nits and switching it off 137

5.6 Conclusion 139
5.7 Exercise 139
5.8 Summary 139

Using a neural network to fit the data 141
6.1 Artificial neurons 142

Composing a multilayer network 144 = Understanding the error
SJunction 144 = Allwe need is activation 145 = More activation
Sfunctions 147 = Choosing the best activation function 148
What learning means for a neural network 149

6.2 The PyTorch nn module 151
Using__call__ rather than forward 152 = Returning to the linear
model 153

6.3 Finally a neural network 158
Replacing the linear model 158 = Inspecting the parameters 159
Comparing to the linear model 161

6.4 Conclusion 162

6.5 Exercises 162

6.6 Summary 163

Telling birds from airplanes: Learning from images 164

7.1 A dataset of tiny images 165

Downloading CIFAR-10 166 = The Dataset class 166
Dataset transforms 168 = Normalizing data 170

7.2 Distinguishing birds from airplanes 172
Building the dataset 173 = A fully connected model 174
Output of a classifier 175 = Representing the output as
probabilities 176 = A loss for classifying 180 = Training the
classifier 182 = The limits of going fully connected 189

7.3 Conclusion 191

7.4
7.5

CONTENTS

Exercises 191

Summary 192

Using convolutions to generalize 193

8.1

8.2

8.3

8.4

8.5

8.6
8.7
8.8

The case for convolutions 194
What convolutions do 194

Convolutions in action 196
Padding the boundary 198 = Delecting features with
convolutions 200 = Looking further with depth and pooling 202
Putting it all together for our network 205

Subclassing nn.Module 207
Our network as an nn.Module 208 = How PyTorch keeps track of
parameters and submodules 209 = The functional AP 210

Training our convnet 212
Measuring accuracy 214 = Saving and loading our model 214
Training on the GPU 215

Model design 217

Adding memory capacity: Width 218 = Helping our model to
converge and generalize: Regularization 219 = Going deeper to
learn more complex structures: Depth 223 = Comparing the designs
Jfrom this section 228 = It’s already outdated 229

Conclusion 229
Exercises 230

Summary 231

Using PyTorch to fight cancer 235

9.1
9.2
9.3
9.4

Introduction to the use case 236
Preparing for a large-scale project 237
Whatis a CT scan, exactly? 238

The project: An end-to-end detector for lung cancer 241

Why can’t we just throw data at a newral network until it
works? 245 = What is a nodule? 249 = Our data source:
The LUNA Grand Challenge 251 = Downloading the LUNA
data 251

ix

CONTENTS

9.5 Conclusion 252
9.6 Summary 253

Combining data sources into a unified dataset 254

10.1 Raw CT data files 256
10.2 Parsing LUNA’s annotation data 256

Training and validation sets 258 = Unifying our annotation and
candidate data 259

10.3 Loading individual CT scans 262
Hounsfield Units 264

10.4 Locating a nodule using the patient coordinate system 265

The patient coordinate system 265 = CT scan shape and
voxel sizes 267 = Converting between millimeters and voxel
addresses 268 = Extracting a nodule from a CT scan 270

10.5 A straightforward dataset implementation 271

Caching candidate arrays with the getCtRawCandidate

Sfunction 274 = Constructing our dataset in LunaDataset
_init__ 275 = A training/validation split 275 - Rendering
the data 277

10.6 Conclusion 277
10.7 Exercises 278
10.8 Summary 278

Training a classification model to detect suspected tumors 279
11.1 A foundational model and training loop 280
11.2 The main entry point for our application 282

11.3 Pretraining setup and initialization 284
Initializing the model and optimizer 285 = Care and feeding of
data loaders 287

11.4 Our first-pass neural network design 289
The core convolutions 290 = The full model 293

11.5 Training and validating the model 295
The computeBatchLoss function 297 = The validation loop is
similar 299

11.6 Outputting performance metrics 300
The logMetrics function 301

CONTENTS xi

11.7 Running the training script 304

Needed data for training 305 = Interlude: The
enumerateWithEstimate function 306

11.8 Evaluating the model: Getting 99.7% correct means we’re
done, right? 308

11.9 Graphing training metrics with TensorBoard 309

Running TensorBoard 309 = Adding TensorBoard support to the
metrics logging function 313

11.10 Why isn’t the model learning to detect nodules? 315
11.11 Conclusion 316

11.12 Exercises 316

11.13 Summary 316

Improving training with metrics and augmentation 318
12.1 High-level plan for improvement 319
12.2 Good dogs vs. bad guys: False positives and false negatives 320

12.3 Graphing the positives and negatives 322

Recall is Roxie’s strength 324 = Precision is Preston’s forte 326
Implementing precision and recall in logMetrics 327 = Our
ultimate performance metric: The FI score 328 = How does our
model perform with our new metrics? 332

12.4 What does an ideal dataset look like? 334

Making the data look less like the actual and more like the “ideal” 336
Contrasting training with a balanced LunaDataset to previous
runs 341 = Recognizing the symptoms of overfitting 343

12.5 Revisiting the problem of overfitting 345
An overfit face-to-age prediction model 345

12.6 Preventing overfitting with data augmentation 346

Specific data augmentation techniques 347 = Seeing the
improvement from data augmentation 352

12.7 Conclusion 354
12.8 Exercises 355
12.9 Summary 356

Using segmentation to find suspected nodules 357

13.1 Adding a second model to our project 358
13.2 Various types of segmentation 360

xii

13.3

13.4

13.5

13.6

13.7
13.8
13.9
13.10

CONTENTS

Semantic segmentation: Per-pixel classification 361
The U-Net architecture 364

Updating the model for segmentation 366
Adapting an off-the-shelf model to our project 367

Updating the dataset for segmentation 369

U-Net has very specific input size requirements 370 = U-Net trade-
offs for 3D vs. 2D data 370 = Building the ground truth

data 371 = Implementing Luna2dSegmentationDataset 378
Designing our training and validation data 382 = Implementing
TrainingLuna2dSegmentationDataset 383 = Augmenting on the
GPU 384

Updating the training script for segmentation 386

Initializing our segmentation and augmentation models 387
Using the Adam optimizer 388 = Diceloss 389 = Getting images
into TensorBoard 392 = Updating our metrics logging 396
Saving our model 397

Results 399
Conclusion 401
Exercises 402
Summary 402

End-to-end nodule analysis, and where to go next 404

14.1
14.2
14.3

14.4
14.5

14.6

14.7

Towards the finish line 405
Independence of the validation set 407
Bridging CT segmentation and nodule candidate
classification 408
Segmentation 410 = Grouping voxels into nodule candidates 411
Did we find a nodule? Classification to reduce false positives 412
Quantitative validation 416

Predicting malignancy 417
Getting malignancy information 417 = An area under the curve
baseline: Classifying by diameter 419 = Reusing preexisting
weights: Fine-tuning 422 = More output in TensorBoard 428
What we see when we diagnose 432

Training, validation, and lest sels 433

What next? Additional sources of inspiration (and data) 434

Preventing overfitting: Better regularization 434 = Refined training
data 437 = Competition resulls and research papers 438

CONTENTS

14.8 Conclusion 439
Behind the curtain 439

14.9 FExercises 441
14.10 Summary 441

Deploying to production 445

15.1 Serving PyTorch models 446

Our model behind a Flask server 446 = What we want from
deployment 448 = Request batching 449

15.2 Exporting models 455

Interoperability beyond PyTorch with ONNX 455 = PyTorch’s own
export: Tracing 456 = Our server with a traced model 458

15.3 Interacting with the PyTorch JIT 458

What to expect from moving beyond classic Python/PyTorch 458
The dual nature of PyTorch as interface and backend 460
TorchScript 461 = Scripting the gaps of traceability 464

15.4 LibTorch: PyTorch in C++ 465

Running [ITed models from C++ 465 = C++ from the start: The
C++ API 468

15.5 Going mobile 472
Improving efficiency: Model design and quantization 475

15.6 Emerging technology: Enterprise serving of PyTorch
models 476

15.7 Conclusion 477
15.8 Exercises 477
15.9 Summary 477

index 479

xiii

Joreword

When we started the PyTorch project in mid-2016, we were a band of open source
hackers who met online and wanted to write better deep learning software. Two of the
three authors of this book, Luca Antiga and Thomas Viehmann, were instrumental in
developing PyTorch and making it the success that it is today.

Our goal with PyTorch was to build the most flexible framework possible to express
deep learning algorithms. We executed with focus and had a relatively short develop-
ment time to build a polished product for the developer market. This wouldn’t have
been possible if we hadn’t been standing on the shoulders of giants. PyTorch derives a
significant part of its codebase from the Torch7 project started in 2007 by Ronan Col-
lobert and others, which has roots in the Lush programming language pioneered by
Yann LeCun and Leon Bottou. This rich history helped us focus on what needed to
change, rather than conceptually starting from scratch.

It is hard to attribute the success of PyTorch to a single factor. The project offers a
good user experience and enhanced debuggability and flexibility, ultimately making
users more productive. The huge adoption of PyTorch has resulted in a beautiful eco-
system of software and research built on top of it, making PyTorch even richer in its
experience.

Several courses and university curricula, as well as a huge number of online blogs
and tutorials, have been offered to make PyTorch easier to learn. However, we have
seen very few books. In 2017, when someone asked me, “When is the PyTorch book
going to be written?” I responded, “If it gets written now, I can guarantee that it will be
outdated by the time it is completed.”

xvi

FOREWORD

With the publication of Deep Learning with PyTorch, we finally have a definitive trea-
tise on PyTorch. It covers the basics and abstractions in great detail, tearing apart the
underpinnings of data structures like tensors and neural networks and making sure
you understand their implementation. Additionally, it covers advanced subjects such
as JIT and deployment to production (an aspect of PyTorch that no other book cur-
rently covers).

Additionally, the book covers applications, taking you through the steps of using
neural networks to help solve a complex and important medical problem. With Luca’s
deep expertise in bioengineering and medical imaging, Eli’s practical experience cre-
ating software for medical devices and detection, and Thomas’s background as a
PyTorch core developer, this journey is treated carefully, as it should be.

All in all, I hope this book becomes your “extended” reference document and an
important part of your library or workshop.

SouMITH CHINTALA
COCREATOR OF PYTORCH

preface

As kids in the 1980s, taking our first steps on our Commodore VIC 20 (Eli), the Sin-
clair Spectrum 48K (Luca), and the Commodore C16 (Thomas), we saw the dawn of
personal computers, learned to code and write algorithms on ever-faster machines,
and often dreamed about where computers would take us. We also were painfully
aware of the gap between what computers did in movies and what they could do in
real life, collectively rolling our eyes when the main character in a spy movie said,
“Computer, enhance.”

Later on, during our professional lives, two of us, Eli and Luca, independently
challenged ourselves with medical image analysis, facing the same kind of struggle
when writing algorithms that could handle the natural variability of the human body.
There was a lot of heuristics involved when choosing the best mix of algorithms that
could make things work and save the day. Thomas studied neural nets and pattern
recognition at the turn of the century but went on to get a PhD in mathematics
doing modeling.

When deep learning came about at the beginning of the 2010s, making its initial
appearance in computer vision, it started being applied to medical image analysis
tasks like the identification of structures or lesions on medical images. It was at that
time, in the first half of the decade, that deep learning appeared on our individual
radars. It took a bit to realize that deep learning represented a whole new way of writ-
ing software: a new class of multipurpose algorithms that could learn how to solve
complicated tasks through the observation of data.

xvii

xviii

PREFACE

To our kids-of-the-80s minds, the horizon of what computers could do expanded
overnight, limited not by the brains of the best programmers, but by the data, the neu-
ral network architecture, and the training process. The next step was getting our
hands dirty. Luca choose Torch 7 (http://torch.ch), a venerable precursor to
PyTorch; it’s nimble, lightweight, and fast, with approachable source code written in
Lua and plain C, a supportive community, and a long history behind it. For Luca, it
was love at first sight. The only real drawback with Torch 7 was being detached from
the ever-growing Python data science ecosystem that the other frameworks could draw
from. Eli had been interested in Al since college,1 but his career pointed him in other
directions, and he found other, earlier deep learning frameworks a bit too laborious
to get enthusiastic about using them for a hobby project.

So we all got really excited when the first PyT'orch release was made public on Jan-
uary 18, 2017. Luca started contributing to the core, and Eli was part of the commu-
nity very early on, submitting the odd bug fix, feature, or documentation update.
Thomas contributed a ton of features and bug fixes to PyTorch and eventually became
one of the independent core contributors. There was the feeling that something big
was starting up, at the right level of complexity and with a minimal amount of cogni-
tive overhead. The lean design lessons learned from the Torch 7 days were being car-
ried over, but this time with a modern set of features like automatic differentiation,
dynamic computation graphs, and NumPy integration.

Given our involvement and enthusiasm, and after organizing a couple of PyTorch
workshops, writing a book felt like a natural next step. The goal was to write a book
that would have been appealing to our former selves getting started just a few years
back.

Predictably, we started with grandiose ideas: teach the basics, walk through end-to-
end projects, and demonstrate the latest and greatest models in PyTorch. We soon
realized that would take a lot more than a single book, so we decided to focus on our
initial mission: devote time and depth to cover the key concepts underlying PyTorch,
assuming little or no prior knowledge of deep learning, and get to the point where we
could walk our readers through a complete project. For the latter, we went back to our
roots and chose to demonstrate a medical image analysis challenge.

! Back when “deep” neural networks meant three hidden layers!

http://torch.ch

acknowledgments

We are deeply indebted to the PyTorch team. It is through their collective effort that
PyTorch grew organically from a summer internship project to a world-class deep
learning tool. We would like to mention Soumith Chintala and Adam Paszke, who, in
addition to their technical excellence, worked actively toward adopting a “community
first” approach to managing the project. The level of health and inclusiveness in the
PyTorch community is a testament to their actions.

Speaking of community, PyTorch would not be what it is if not for the relentless
work of individuals helping early adopters and experts alike on the discussion forum.
Of all the honorable contributors, Piotr Bialecki deserves our particular badge of grat-
itude. Speaking of the book, a particular shout-out goes to Joe Spisak, who believed in
the value that this book could bring to the community, and also Jeff Smith, who did an
incredible amount of work to bring that value to fruition. Bruce Lin’s work to excerpt
part 1 of this text and provide it to the PyTorch community free of charge is also
hugely appreciated.

We would like to thank the team at Manning for guiding us through this journey,
always aware of the delicate balance between family, job, and writing in our respective
lives. Thanks to Erin Twohey for reaching out and asking if we’d be interested in writ-
ing a book, and thanks to Michael Stephens for tricking us into saying yes. We fold you
we had no time! Brian Hanafee went above and beyond a reviewer’s duty. Arthur
Zubarev and Kostas Passadis gave great feedback, and Jennifer Houle had to deal with
our wacky art style. Our copyeditor, Tiffany Taylor, has an impressive eye for detail;
any mistakes are ours and ours alone. We would also like to thank our project editor,

xix

ACKNOWLEDGMENTS

Deirdre Hiam, our proofreader, Katie Tennant, and our review editor, Ivan M arti-
novi¢. There are also a host of people working behind the scenes, glimpsed only on
the CC list of status update threads, and all necessary to bring this book to print.
Thank you to every name we’ve left off this list! The anonymous reviewers who gave
their honest feedback helped make this book what it is.

Frances Lefkowitz, our tireless editor, deserves a medal and a week on a tropical
island after dragging this book over the finish line. Thank you for all you’ve done and
for the grace with which you did it.

We would also like to thank our reviewers, who have helped to improve our book in
many ways: Aleksandr Erofeev, Audrey Carstensen, Bachir Chihani, Carlos Andres
Mariscal, Dale Neal, Daniel Berecz, Doniyor Ulmasov, Ezra Stevens, Godfred Asamoah,
Helen Mary Labao Barrameda, Hilde Van Gysel, Jason Leonard, Jeff Coggshall, Kostas
Passadis, Linnsey Nil, Mathieu Zhang, Michael Constant, Miguel Montalvo, Orlando
Alejo Méndez Morales, Philippe Van Bergen, Reece Stevens, Srinivas K. Raman, and
Yujan Shrestha.

To our friends and family, wondering what rock we’ve been hiding under these
past two years: Hi! We missed you! Let’s have dinner sometime.

about this book

This book has the aim of providing the foundations of deep learning with PyTorch and
showing them in action in a real-life project. We strive to provide the key concepts under-
lying deep learning and show how PyTorch puts them in the hands of practitioners. In
the book, we try to provide intuition that will support further exploration, and in doing
so we selectively delve into details to show what is going on behind the curtain.

Deep Learning with PyTorch doesn’t try to be a reference book; rather, it’s a concep-
tual companion that will allow you to independently explore more advanced material
online. As such, we focus on a subset of the features offered by PyTorch. The most

notable absence is recurrent neural networks, but the same is true for other parts of
the PyTorch API.

Who should read this book

This book is meant for developers who are or aim to become deep learning practi-
tioners and who want to get acquainted with PyTorch. We imagine our typical reader
to be a computer scientist, data scientist, or software engineer, or an undergraduate-
or-later student in a related program. Since we don’t assume prior knowledge of deep
learning, some parts in the first half of the book may be a repetition of concepts that
are already known to experienced practitioners. For those readers, we hope the expo-
sition will provide a slightly different angle to known topics.

We expect readers to have basic knowledge of imperative and object-oriented pro-
gramming. Since the book uses Python, you should be familiar with the syntax and
operating environment. Knowing how to install Python packages and run scripts on

xxii ABOUT THIS BOOK

your platform of choice is a prerequisite. Readers coming from C++, Java, JavaScript,
Ruby, or other such languages should have an easy time picking it up but will need to
do some catch-up outside this book. Similarly, being familiar with NumPy will be use-
ful, if not strictly required. We also expect familiarity with some basic linear algebra,
such as knowing what matrices and vectors are and what a dot product is.

How this book is organized: A roadmap

Deep Learning with PyTorchis organized in three distinct parts. Part 1 covers the founda-
tions, while part 2 walks you through an end-to-end project, building on the basic con-
cepts introduced in part 1 and adding more advanced ones. The short part 3 rounds
off the book with a tour of what PyTorch offers for deployment. You will likely notice
different voices and graphical styles among the parts. Although the book is a result of
endless hours of collaborative planning, discussion, and editing, the act of writing and
authoring graphics was split among the parts: Luca was primarily in charge of part 1
and Eli of part 2.2 When Thomas came along, he tried to blend the style in part 3 and
various sections here and there with the writing in parts 1 and 2. Rather than finding a
minimum common denominator, we decided to preserve the original voices that char-
acterized the parts.

Following is a breakdown of each part into chapters and a brief description of each.
PART 1
In part 1, we take our first steps with PyTorch, building the fundamental skills needed
to understand PyTorch projects out there in the wild as well as starting to build our
own. We’ll cover the PyTorch API and some behind-the-scenes features that make
PyTorch the library it is, and work on training an initial classification model. By the
end of part 1, we’ll be ready to tackle a real-world project.

Chapter 1 introduces PyTorch as a library and its place in the deep learning revolu-
tion, and touches on what sets PyTorch apart from other deep learning frameworks.

Chapter 2 shows PyTorch in action by running examples of pretrained networks; it
demonstrates how to download and run models in PyTorch Hub.

Chapter 3 introduces the basic building block of PyTorch—the tensor—showing
its API and going behind the scenes with some implementation details.

Chapter 4 demonstrates how different kinds of data can be represented as tensors
and how deep learning models expects tensors to be shaped.

Chapter 5 walks through the mechanics of learning through gradient descent and
how PyTorch enables it with automatic differentiation.

Chapter 6 shows the process of building and training a neural network for regres-
sion in PyTorch using the nn and optim modules.

Chapter 7 builds on the previous chapter to create a fully connected model for
image classification and expand the knowledge of the PyTorch API.

Chapter 8 introduces convolutional neural networks and touches on more advanced
concepts for building neural network models and their PyTorch implementation.

2 Asmattering of Eli’sand Thomas’s art appears in other parts; don’t be shocked if the style changes mid-chapter!

ABOUT THIS BOOK xxiii

PART 2

In part 2, each chapter moves us closer to a comprehensive solution to automatic
detection of lung cancer. We’ll use this difficult problem as motivation to demonstrate
the real-world approaches needed to solve large-scale problems like cancer screening.
It is a large project with a focus on clean engineering, troubleshooting, and problem
solving.

Chapter 9 describes the end-to-end strategy we’ll use for lung tumor classification,
starting from computed tomography (CT) imaging.

Chapter 10 loads the human annotation data along with the images from CT scans
and converts the relevant information into tensors, using standard PyTorch APIs.

Chapter 11 introduces a first classification model that consumes the training data
introduced in chapter 10. We train the model and collect basic performance metrics.
We also introduce using TensorBoard to monitor training.

Chapter 12 explores and implements standard performance metrics and uses
those metrics to identify weaknesses in the training done previously. We then mitigate
those flaws with an improved training set that uses data balancing and augmentation.

Chapter 13 describes segmentation, a pixel-to-pixel model architecture that we use
to produce a heatmap of possible nodule locations that covers the entire CT scan.
This heatmap can be used to find nodules on CT scans for which we do not have
human-annotated data.

Chapter 14 implements the final end-to-end project: diagnosis of cancer patients
using our new segmentation model followed by classification.

PART 3

Part 3 is a single chapter on deployment. Chapter 15 provides an overview of how to
deploy PyTorch models to a simple web service, embed them in a C++ program, or
bring them to a mobile phone.

About the code

All of the code in this book was written for Python 3.6 or later. The code for the book
is available for download from Manning’s website (www.manning.com/books/
deep-learning-with-pytorch) and on GitHub (https://github.com/deep-learning-with-
pytorch/dlwpt-code). Version 3.6.8 was current at the time of writing and is what we
used to test the examples in this book. For example:

S python

Python 3.6.8 (default, Jan 14 2019, 11:02:34)

[GCC 8.0.1 20180414 on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

Command lines intended to be entered at a Bash prompt start with $ (for example,
the $ python line in this example). Fixed-width inline code looks like self.

Code blocks that begin with >>> are transcripts of a session at the Python interac-
tive prompt. The >>> characters are not meant to be considered input; text lines that

https://www.manning.com/books/deep-learning-with-pytorch
https://www.manning.com/books/deep-learning-with-pytorch
https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code
https://github.com/deep-learning-with-pytorch/dlwpt-code

XxXiv

ABOUT THIS BOOK

do not start with >>> or .. are output. In some cases, an extra blank line is inserted
before the >>> to improve readability in print. These blank lines are not included
when you actually enter the text at the interactive prompt:

>>> print ("Hello, world!") This blank line would not be
Hello, world! present during an actual
interactive session.

>>> print ("Until next time...")
Until next time...

We also make heavy use of Jupyter Notebooks, as described in chapter 1, in section
1.5.1. Code from a notebook that we provide as part of the official GitHub repository
looks like this:

In[1]:
print ("Hello, world!")

Out[l]:
Hello, world!

In[2]:
print ("Until next time...")

Out[2]:
Until next time...

Almost all of our example notebooks contain the following boilerplate in the first cell
(some lines may be missing in early chapters), which we skip including in the book
after this point:

In[1l]:

gmatplotlib inline

from matplotlib import pyplot as plt
import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim

torch.set_printoptions (edgeitems=2)
torch.manual_seed(123)

Otherwise, code blocks are partial or entire sections of .py source files.

Listing 15.1 main.py:5, def main

def main():
print ("Hello, world!")

if _ name_ == '_ _main__ ':
main ()

ABOUT THIS BOOK XXV

Many of the code samples in the book are presented with two-space indents. Due to the
limitations of print, code listings are limited to 80-character lines, which can be imprac-
tical for heavily indented sections of code. The use of two-space indents helps to miti-
gate the excessive line wrapping that would otherwise be present. All of the code
available for download for the book (again, at www.manning.com/books/deep-learn-
ing-with-pytorch and https://github.com/deep-learning-with-pytorch/dlwpt-code)
uses a consistent four-space indent. Variables named with a _t suffix are tensors stored
in CPU memory, _g are tensors in GPU memory, and _a are NumPy arrays.

Hardware and software requirements

Part 1 has been designed to not require any particular computing resources. Any
recent computer or online computing resource will be adequate. Similarly, no certain
operating system is required. In part 2, we anticipate that completing a full training
run for the more advanced examples will require a CUDA-capable GPU. The default
parameters used in part 2 assume a GPU with 8 GB of RAM (we suggest an NVIDIA
GTX 1070 or better), but the parameters can be adjusted if your hardware has less
RAM available. The raw data needed for part 2’s cancer-detection project is about 60
GB to download, and you will need a total of 200 GB (at minimum) of free disk space
on the system that will be used for training. Luckily, online computing services
recently started offering GPU time for free. We discuss computing requirements in
more detail in the appropriate sections.

You need Python 3.6 or later; instructions can be found on the Python website (www
.python.org/downloads). For PyTorch installation information, see the Get Started
guide on the official PyTorch website (https://pytorch.org/get-started/locally).
We suggest that Windows users install with Anaconda or Miniconda (https://www
.anaconda.com/distribution or https://docs.conda.io/en/latest/miniconda.html).
Other operating systems like Linux typically have a wider variety of workable options,
with Pip being the most common package manager for Python. We provide a require-
ments.txt file that Pip can use to install dependencies. Since current Apple laptops do
not include GPUs that support CUDA, the precompiled macOS packages for PyTorch
are CPU-only. Of course, experienced users are free to install packages in the way that
is most compatible with your preferred development environment.

liveBook discussion forum

Purchase of Deep Learning with PyTorch includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum, go to https://livebook.manning.com/#!/book/deep-learning-with-pytorch/
discussion. You can learn more about Manning’s forums and the rules of conduct at
https://livebook.manning .com/#!/discussion. Manning’s commitment to our read-
ers is to provide a venue where a meaningful dialogue between individual readers and
between readers and the author can take place. It is not a commitment to any specific

https://www.manning.com/books/deep-learning-with-pytorch
https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code
http://www.python.org/downloads
http://www.python.org/downloads
http://www.python.org/downloads
https://pytorch.org/get-started/locally
https://www.anaconda.com/distribution
https://www.anaconda.com/distribution
https://www.anaconda.com/distribution
https://docs.conda.io/en/latest/miniconda.html
https://livebook.manning.com/#!/book/deep-learning-with-pytorch/discussion
https://livebook.manning.com/#!/book/deep-learning-with-pytorch/discussion
https://livebook.manning .com/#!/discussion

xXxXVi

ABOUT THIS BOOK

amount of participation on the part of the authors, whose contribution to the forum
remains voluntary (and unpaid). We suggest you try asking them some challenging
questions lest their interest stray! The forum and the archives of previous discussions
will be accessible from the publisher’s website as long as the book is in print.

Other online resources

Although this book does not assume prior knowledge of deep learning, it is not a foun-
dational introduction to deep learning. We cover the basics, but our focus is on proficiency
with the PyTorch library. We encourage interested readers to build up an intuitive under-
standing of deep learning either before, during, or after reading this book. Toward that
end, Grokking Deep Learning (www.manning.com/books/grokking-deep-learning) is a
great resource for developing a strong mental model and intuition about the mechanism
underlying deep neural networks. For a thorough introduction and reference, we direct
you to Deep Learning by Goodfellow et al. (www.deeplearningbook.org). And of course,
Manning Publications has an extensive catalog of deep learning titles (www.manning
.com/catalog#section-83) that cover a wide variety of topics in the space. Depending on
your interests, many of them will make an excellent next book to read.

https://www.manning.com/books/grokking-deep-learning
http://www.deeplearningbook.org
https://www.manning.com/catalog#section-83
https://www.manning.com/catalog#section-83
https://www.manning.com/catalog#section-83

about the authors

Eli Stevens has spent the majority of his career working at startups in Silicon Valley,
with roles ranging from software engineer (making enterprise networking appliances)
to CTO (developing software for radiation oncology). At publication, he is working
on machine learning in the self-driving-car industry.

Luca Antiga worked as a researcher in biomedical engineering in the 2000s, and
spent the last decade as a cofounder and CTO of an Al engineering company. He has
contributed to several open source projects, including the PyTorch core. He recently
cofounded a US-based startup focused on infrastructure for data-defined software.

Thomas Viehmann is a machine learning and PyTorch specialty trainer and con-
sultant based in Munich, Germany, and a PyTorch core developer. With a PhD in
mathematics, he is not scared by theory, but he is thoroughly practical when applying
it to computing challenges.

xxvii

about the cover illustration

The figure on the cover of Deep Learning with PyTorch is captioned “Kardinian.” The
illustration is taken from a collection of dress costumes from various countries by
Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes civils actuels de tous les
peuples connus, published in France in 1788. Each illustration is finely drawn and col-
ored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

iii

Part 1

Core PyTorch

-b ‘elcome to the first part of this book. This is where we’ll take our first

steps with PyTorch, gaining the fundamental skills needed to understand its
anatomy and work out the mechanics of a PyTorch project.

In chapter 1, we’ll make our first contact with PyTorch, understand what it is
and what problems it solves, and how it relates to other deep learning frame-
works. Chapter 2 will take us on a tour, giving us a chance to play with models
that have been pretrained on fun tasks. Chapter 3 gets a bit more serious and
teaches the basic data structure used in PyTorch programs: the tensor. Chapter 4
will take us on another tour, this time across ways to represent data from differ-
ent domains as PyTorch tensors. Chapter 5 unveils how a program can learn
from examples and how PyTorch supports this process. Chapter 6 provides the
fundamentals of what a neural network is and how to build a neural network
with PyTorch. Chapter 7 tackles a simple image classification problem with a
neural network architecture. Finally, chapter 8 shows how the same problem can
be cracked in a much smarter way using a convolutional neural network.

By the end of part 1, we’ll have what it takes to tackle a real-world problem
with PyTorch in part 2.

Introducing deep
learning and the
PyTorch Library

This chapter covers

How deep learning changes our approach to
machine learning

Understanding why PyTorch is a good fit for deep
learning

Examining a typical deep learning project

The hardware you’ll need to follow along with the
examples

The poorly defined term artificial intelligence covers a set of disciplines that have
been subjected to a tremendous amount of research, scrutiny, confusion, fantasti-
cal hype, and sci-fi fearmongering. Reality is, of course, far more sanguine. It would
be disingenuous to assert that today’s machines are learning to “think” in any
human sense of the word. Rather, we’ve discovered a general class of algorithms

11

CHAPTER 1 Introducing deep learning and the PyTorch Library

that are able to approximate complicated, nonlinear processes very, very effectively,
which we can use to automate tasks that were previously limited to humans.

For example, at https://talktotransformer.com, a language model called GPT-2
can generate coherent paragraphs of text one word at a time. When we fed it this very
paragraph, it produced the following:

Next we’re going lo feed in a list of phrases from a corpus of email addresses, and see if the
program can parse the lists as sentences. Again, this is much more complicated and far more
complex than the search at the beginning of this post, but hopefully helps you understand the
basics of constructing senlence structures in various programming languages.

That’s remarkably coherent for a machine, even if there isn’t a well-defined thesis
behind the rambling.

Even more impressively, the ability to perform these formerly human-only tasks is
acquired through examples, rather than encoded by a human as a set of handcrafted
rules. In a way, we’re learning that intelligence is a notion we often conflate with self-
awareness, and self-awareness is definitely not required to successfully carry out these
kinds of tasks. In the end, the question of computer intelligence might not even be
important. Edsger W. Dijkstra found that the question of whether machines could
think was “about as relevant as the question of whether Submarines Can Swim.”!

That general class of algorithms we’re talking about falls under the Al subcategory
of deep learning, which deals with training mathematical entities named deep neural net-
works by presenting instructive examples. Deep learning uses large amounts of data to
approximate complex functions whose inputs and outputs are far apart, like an input
image and, as output, a line of text describing the input; or a written script as input
and a natural-sounding voice reciting the script as output; or, even more simply, asso-
ciating an image of a golden retriever with a flag that tells us “Yes, a golden retriever is
present.” This kind of capability allows us to create programs with functionality that
was, until very recently, exclusively the domain of human beings.

The deep learning revolution

To appreciate the paradigm shift ushered in by this deep learning approach, let’s take
a step back for a bit of perspective. Until the last decade, the broader class of systems
that fell under the label machine learning relied heavily on feature engineering. Features
are transformations on input data that facilitate a downstream algorithm, like a classi-
fier, to produce correct outcomes on new data. Feature engineering consists of com-
ing up with the right transformations so that the downstream algorithm can solve a
task. For instance, in order to tell ones from zeros in images of handwritten digits, we
would come up with a set of filters to estimate the direction of edges over the image,
and then train a classifier to predict the correct digit given a distribution of edge
directions. Another useful feature could be the number of enclosed holes, as seen in a
zero, an eight, and, particularly, loopy twos.

! Edsger W. Dijkstra, “The Threats to Computing Science,” http://mng.bz/nPJ5.

http://mng.bz/nPJ5
https://talktotransformer.com

The deep learning revolution 5

Deep learning, on the other hand, deals with finding such representations auto-
matically, from raw data, in order to successfully perform a task. In the ones versus
zeros example, filters would be refined during training by iteratively looking at pairs
of examples and target labels. This is not to say that feature engineering has no place
with deep learning; we often need to inject some form of prior knowledge in a learn-
ing system. However, the ability of a neural network to ingest data and extract useful
representations on the basis of examples is what makes deep learning so powerful.
The focus of deep learning practitioners is not so much on handcrafting those repre-
sentations, but on operating on a mathematical entity so that it discovers representa-
tions from the training data autonomously. Often, these automatically created
features are better than those that are handcrafted! As with many disruptive technolo-
gies, this fact has led to a change in perspective.

On the left side of figure 1.1, we see a practitioner busy defining engineering fea-
tures and feeding them to a learning algorithm; the results on the task will be as good
as the features the practitioner engineers. On the right, with deep learning, the raw
data is fed to an algorithm that extracts hierarchical features automatically, guided by
the optimization of its own performance on the task; the results will be as good as the
ability of the practitioner to drive the algorithm toward its goal.

\ ,k\ DATA

©

HAND- /

CRAFTED @m% 0&@0 3-’

|
]
]
|
|
|
|
|
|
FEATURES
| \ /%
CQ | LEARNING
|
|
|
|
|
|
|
|

DEEP
LEARNING
MACHINE 2 MACHINE
oLTCOME
REPRESENTATIONS \L 42
THE PARADIGM SHIFT

OUTCOME Uz

Figure 1.1 Deep learning exchanges the need to handcraft features for an increase in data and
computational requirements.

1.2

CHAPTER 1 Introducing deep learning and the PyTorch Library

Starting from the right side in figure 1.1, we already get a glimpse of what we need to
execute successful deep learning:

We need a way to ingest whatever data we have at hand.

We somehow need to define the deep learning machine.

We must have an automated way, training, to obtain useful representations and
make the machine produce desired outputs.

This leaves us with taking a closer look at this training thing we keep talking about.
During training, we use a criterion, a real-valued function of model outputs and refer-
ence data, to provide a numerical score for the discrepancy between the desired and
actual output of our model (by convention, a lower score is typically better). Training
consists of driving the criterion toward lower and lower scores by incrementally modi-
fying our deep learning machine until it achieves low scores, even on data not seen
during training.

PyTorch for deep learning

PyTorch is a library for Python programs that facilitates building deep learning proj-
ects. It emphasizes flexibility and allows deep learning models to be expressed in idi-
omatic Python. This approachability and ease of use found early adopters in the
research community, and in the years since its first release, it has grown into one of
the most prominent deep learning tools across a broad range of applications.

As Python does for programming, PyTorch provides an excellent introduction to
deep learning. At the same time, PyTorch has been proven to be fully qualified for use
in professional contexts for real-world, high-profile work. We believe that PyTorch’s
clear syntax, streamlined API, and easy debugging make it an excellent choice for
introducing deep learning. We highly recommend studying PyTorch for your first
deep learning library. Whether it ought to be the last deep learning library you learn
is a decision we leave up to you.

At its core, the deep learning machine in figure 1.1 is a rather complex mathemat-
ical function mapping inputs to an output. To facilitate expressing this function,
PyTorch provides a core data structure, the tensor, which is a multidimensional array
that shares many similarities with NumPy arrays. Around that foundation, PyTorch
comes with features to perform accelerated mathematical operations on dedicated
hardware, which makes it convenient to design neural network architectures and train
them on individual machines or parallel computing resources.

This book is intended as a starting point for software engineers, data scientists, and
motivated students fluent in Python to become comfortable using PyTorch to build
deep learning projects. We want this book to be as accessible and useful as possible,
and we expect that you will be able to take the concepts in this book and apply them
to other domains. To that end, we use a hands-on approach and encourage you to
keep your computer at the ready, so you can play with the examples and take them a
step further. By the time we are through with the book, we expect you to be able to

1.3

Why PyTorch? 7

take a data source and build out a deep learning project with it, supported by the
excellent official documentation.

Although we stress the practical aspects of building deep learning systems with
PyTorch, we believe that providing an accessible introduction to a foundational deep
learning tool is more than just a way to facilitate the acquisition of new technical skills.
It is a step toward equipping a new generation of scientists, engineers, and practi-
tioners from a wide range of disciplines with working knowledge that will be the back-
bone of many software projects during the decades to come.

In order to get the most out of this book, you will need two things:

Some experience programming in Python. We’re not going to pull any punches
on that one; you’ll need to be up on Python data types, classes, floating-point
numbers, and the like.

A willingness to dive in and get your hands dirty. We’ll be starting from the
basics and building up our working knowledge, and it will be much easier for
you to learn if you follow along with us.

Deep Learning with PyTorchis organized in three distinct parts. Part 1 covers the founda-
tions, examining in detail the facilities PyTorch offers to put the sketch of deep learn-
ing in figure 1.1 into action with code. Part 2 walks you through an end-to-end project
involving medical imaging: finding and classifying tumors in CT scans, building on
the basic concepts introduced in part 1, and adding more advanced topics. The short
part 3 rounds off the book with a tour of what PyTorch offers for deploying deep
learning models to production.

Deep learning is a huge space. In this book, we will be covering a tiny part of that
space: specifically, using PyTorch for smaller-scope classification and segmentation
projects, with image processing of 2D and 3D datasets used for most of the motivating
examples. This book focuses on practical PyTorch, with the aim of covering enough
ground to allow you to solve real-world machine learning problems, such as in vision,
with deep learning or explore new models as they pop up in research literature. Most,
if not all, of the latest publications related to deep learning research can be found in
the arXiV public preprint repository, hosted at https://arxiv.org.?

Why PyTorch?

Aswe’ve said, deep learning allows us to carry out a very wide range of complicated tasks,
like machine translation, playing strategy games, or identifying objects in cluttered
scenes, by exposing our model to illustrative examples. In order to do so in practice, we
need tools that are flexible, so they can be adapted to such a wide range of problems,
and efficient, to allow training to occur over large amounts of data in reasonable times;
and we need the trained model to perform correctly in the presence of variability in the
inputs. Let’s take a look at some of the reasons we decided to use PyTorch.

2 We also recommend www.arxiv-sanity.com to help organize research papers of interest.

https://arxiv.org
http://www.arxiv-sanity.com/

13.1

CHAPTER 1 Introducing deep learning and the PyTorch Library

PyTorch is easy to recommend because of its simplicity. Many researchers and prac-
titioners find it easy to learn, use, extend, and debug. It’s Pythonic, and while like any
complicated domain it has caveats and best practices, using the library generally feels
familiar to developers who have used Python previously.

More concretely, programming the deep learning machine is very natural in
PyTorch. PyTorch gives us a data type, the Tensor, to hold numbers, vectors, matrices,
or arrays in general. In addition, it provides functions for operating on them. We can
program with them incrementally and, if we want, interactively, just like we are used to
from Python. If you know NumPy, this will be very familiar.

But PyTorch offers two things that make it particularly relevant for deep learning:
first, it provides accelerated computation using graphical processing units (GPUs),
often yielding speedups in the range of 50x over doing the same calculation on a
CPU. Second, PyTorch provides facilities that support numerical optimization on
generic mathematical expressions, which deep learning uses for training. Note that
both features are useful for scientific computing in general, not exclusively for deep
learning. In fact, we can safely characterize PyTorch as a high-performance library
with optimization support for scientific computing in Python.

A design driver for PyTorch is expressivity, allowing a developer to implement com-
plicated models without undue complexity being imposed by the library (it’s not a
framework!). PyTorch arguably offers one of the most seamless translations of ideas
into Python code in the deep learning landscape. For this reason, PyTorch has seen
widespread adoption in research, as witnessed by the high citation counts at interna-
tional conferences.®

PyTorch also has a compelling story for the transition from research and develop-
ment into production. While it was initially focused on research workflows, PyTorch
has been equipped with a high-performance C++ runtime that can be used to deploy
models for inference without relying on Python, and can be used for designing and
training models in C++. It has also grown bindings to other languages and an inter-
face for deploying to mobile devices. These features allow us to take advantage of
PyTorch’s flexibility and at the same time take our applications where a full Python
runtime would be hard to get or would impose expensive overhead.

Of course, claims of ease of use and high performance are trivial to make. We
hope that by the time you are in the thick of this book, you’ll agree with us that our
claims here are well founded.

The deep learning competitive landscape

While all analogies are flawed, it seems that the release of PyTorch 0.1 in January 2017
marked the transition from a Cambrian-explosion-like proliferation of deep learning
libraries, wrappers, and data-exchange formats into an era of consolidation and
unification.

* At the International Conference on Learning Representations (ICLR) 2019, PyTorch appeared as a citation
in 252 papers, up from 87 the previous year and at the same level as TensorFlow, which appeared in 266 papers.

Why PyTorch?

NOTE The deep learning landscape has been moving so quickly lately that by
the time you read this in print, it will likely be out of date. If you’re unfamiliar
with some of the libraries mentioned here, that’s fine.

At the time of PyTorch’s first beta release:

Theano and TensorFlow were the premiere low-level libraries, working with a

model that had the user define a computational graph and then execute it.

Lasagne and Keras were high-level wrappers around Theano, with Keras wrap-

ping TensorFlow and CNTK as well.

Caffe, Chainer, DyNet, Torch (the Lua-based precursor to PyTorch), MXNet,

CNTK, DL4], and others filled various niches in the ecosystem.

In the roughly two years that followed, the landscape changed drastically. The com-
munity largely consolidated behind either PyTorch or TensorFlow, with the adoption

of other libraries dwindling, except for those filling specific niches. In a nutshell:

Theano, one of the first deep learning frameworks, has ceased active development.

TensorFlow:

— Consumed Keras entirely, promoting it to a first-class API

— Provided an immediate-execution “eager mode” that is somewhat similar to

how PyTorch approaches computation
— Released TF 2.0 with eager mode by default

JAX, a library by Google that was developed independently from TensorFlow,
has started gaining traction as a NumPy equivalent with GPU, autograd and JIT

capabilities.
PyTorch:
— Consumed Caffe2 for its backend

— Replaced most of the low-level code reused from the Lua-based Torch project

— Added support for ONNX, a vendor-neutral model description and

exchange format
— Added a delayed-execution “graph mode” runtime called TorchScript
— Released version 1.0

— Replaced CNTK and Chainer as the framework of choice by their respective

corporate sponsors

TensorFlow has a robust pipeline to production, an extensive industry-wide commu-
nity, and massive mindshare. PyTorch has made huge inroads with the research and
teaching communities, thanks to its ease of use, and has picked up momentum since,

as researchers and graduates train students and move to industry. It has also built up

steam in terms of production solutions. Interestingly, with the advent of TorchScript

and eager mode, both PyTorch and TensorFlow have seen their feature sets start to
converge with the other’s, though the presentation of these features and the overall

experience is still quite different between the two.

10

14

CHAPTER 1 Introducing deep learning and the PyTorch Library

An overview of how PyTorch supports deep learning projects

We have already hinted at a few building blocks in PyTorch. Let’s now take some time
to formalize a high-level map of the main components that form PyTorch. We can best
do this by looking at what a deep learning project needs from PyTorch.

First, PyTorch has the “Py” as in Python, but there’s a lot of non-Python code in it.
Actually, for performance reasons, most of PyTorch is written in C++ and CUDA
(www.geforce.com/hardware/technology/cuda), a C++like language from NVIDIA
that can be compiled to run with massive parallelism on GPUs. There are ways to run
PyTorch directly from C++, and we’ll look into those in chapter 15. One of the motiva-
tions for this capability is to provide a reliable strategy for deploying models in pro-
duction. However, most of the time we’ll interact with PyTorch from Python, building
models, training them, and using the trained models to solve actual problems.

Indeed, the Python API is where PyTorch shines in term of usability and integra-
tion with the wider Python ecosystem. Let’s take a peek at the mental model of what
PyTorch is.

As we already touched on, at its core, PyTorch is a library that provides multidimen-
sional arrays, or tensors in PyT'orch parlance (we’ll go into details on those in chapter
3), and an extensive library of operations on them, provided by the torch module.
Both tensors and the operations on them can be used on the CPU or the GPU. Mov-
ing computations from the CPU to the GPU in PyTorch doesn’t require more than an
additional function call or two. The second core thing that PyTorch provides is the
ability of tensors to keep track of the operations performed on them and to analyti-
cally compute derivatives of an output of a computation with respect to any of its
inputs. This is used for numerical optimization, and it is provided natively by tensors
by virtue of dispatching through PyTorch’s autograd engine under the hood.

By having tensors and the autograd-enabled tensor standard library, PyTorch can
be used for physics, rendering, optimization, simulation, modeling, and more—we’re
very likely to see PyTorch used in creative ways throughout the spectrum of scientific
applications. But PyTorch is first and foremost a deep learning library, and as such it
provides all the building blocks needed to build neural networks and train them. Fig-
ure 1.2 shows a standard setup that loads data, trains a model, and then deploys that
model to production.

The core PyTorch modules for building neural networks are located in torch.nn,
which provides common neural network layers and other architectural components.
Fully connected layers, convolutional layers, activation functions, and loss functions
can all be found here (we’ll go into more detail about what all that means as we go
through the rest of this book). These components can be used to build and initialize
the untrained model we see in the center of figure 1.2. In order to train our model, we
need a few additional things: a source of training data, an optimizer to adapt the
model to the training data, and a way to get the model and data to the hardware that
will actually be performing the calculations needed for training the model.

https://www.geforce.com/hardware/technology/cuda

An overview of how PyTorch supports deep learning projects 11

ONTRAINED
MOLTIPROCESS MODEL
DATA LOADING % t
SAMPLE HH- BATCH TRAINED
TENSORS N PRODULCTION
DATA TENSOR MoDEL (ONNYX, TT

TRAINING TORCHSCRIAT)
SOURCE
o ~—% Loor @

| N,
l\/\méﬁf 2

0] 0 0
= =] = =
DISTRIRLTED TRAINING PROPUCTION
ON MULTIPLE SERVERY/GPUS SERVER

Figure 1.2 Basic, high-level structure of a PyTorch project, with data loading, training, and
deployment to production

At left in figure 1.2, we see that quite a bit of data processing is needed before the
training data even reaches our model.* First we need to physically get the data, most
often from some sort of storage as the data source. Then we need to convert each sam-
ple from our data into a something PyTorch can actually handle: tensors. This bridge
between our custom data (in whatever format it might be) and a standardized
PyTorch tensor is the Dataset class PyTorch provides in torch.utils.data. As this
process is wildly different from one problem to the next, we will have to implement
this data sourcing ourselves. We will look in detail at how to represent various type of
data we might want to work with as tensors in chapter 4.

As data storage is often slow, in particular due to access latency, we want to paral-
lelize data loading. But as the many things Python is well loved for do not include easy,
efficient, parallel processing, we will need multiple processes to load our data, in order
to assemble them into balches: tensors that encompass several samples. This is rather
elaborate; but as it is also relatively generic, PyTorch readily provides all that magic in
the DataLoader class. Its instances can spawn child processes to load data from a data-
setin the background so that it’s ready and waiting for the training loop as soon as the
loop can use it. We will meet and use Dataset and DataLoader in chapter 7.

* And that’s just the data preparation that is done on the fly, not the preprocessing, which can be a pretty large
part in practical projects.

12

CHAPTER 1 Introducing deep learning and the PyTorch Library

With the mechanism for getting batches of samples in place, we can turn to the
training loop itself at the center of figure 1.2. Typically, the training loop is imple-
mented as a standard Python for loop. In the simplest case, the model runs the
required calculations on the local CPU or a single GPU, and once the training loop
has the data, computation can start immediately. Chances are this will be your basic
setup, too, and it’s the one we’ll assume in this book.

At each step in the training loop, we evaluate our model on the samples we got
from the data loader. We then compare the outputs of our model to the desired out-
put (the targets) using some criterion or loss function. Just as it offers the components
from which to build our model, PyTorch also has a variety of loss functions at our dis-
posal. They, too, are provided in torch.nn. After we have compared our actual out-
puts to the ideal with the loss functions, we need to push the model a little to move its
outputs to better resemble the target. As mentioned earlier, this is where the PyTorch
autograd engine comes in; but we also need an optimizer doing the updates, and that is
what PyTorch offers us in torch.optim. We will start looking at training loops with loss
functions and optimizers in chapter 5 and then hone our skills in chapters 6 through
8 before embarking on our big project in part 2.

It’s increasingly common to use more elaborate hardware like multiple GPUs or
multiple machines that contribute their resources to training a large model, as seen in
the bottom center of figure 1.2. In those cases, torch.nn.parallel.Distributed-
DataParallel and the torch.distributed submodule can be employed to use the
additional hardware.

The training loop might be the most unexciting yet most time-consuming part of a
deep learning project. At the end of it, we are rewarded with a model whose parame-
ters have been optimized on our task: the trained model depicted to the right of the
training loop in the figure. Having a model to solve a task is great, but in order for it
to be useful, we must put it where the work is needed. This deployment part of the pro-
cess, depicted on the right in figure 1.2, may involve putting the model on a server or
exporting it to load it to a cloud engine, as shown in the figure. Or we might integrate
it with a larger application, or run it on a phone.

One particular step of the deployment exercise can be to export the model. As
mentioned earlier, PyTorch defaults to an immediate execution model (eager mode).
Whenever an instruction involving PyTorch is executed by the Python interpreter, the
corresponding operation is immediately carried out by the underlying CG++ or CUDA
implementation. As more instructions operate on tensors, more operations are exe-
cuted by the backend implementation.

PyTorch also provides a way to compile models ahead of time through TorchScript.
Using TorchScript, PyTorch can serialize a model into a set of instructions that can be
invoked independently from Python: say, from C++ programs or on mobile devices. We
can think about it as a virtual machine with a limited instruction set, specific to tensor
operations. This allows us to export our model, either as TorchScript to be used with
the PyTorch runtime, or in a standardized format called ONNX. These features are at

1.5

Hardware and software requirements 13

the basis of the production deployment capabilities of PyTorch. We’ll cover this in
chapter 15.

Hardware and software requirements

This book will require coding and running tasks that involve heavy numerical comput-
ing, such as multiplication of large numbers of matrices. As it turns out, running a
pretrained network on new data is within the capabilities of any recent laptop or per-
sonal computer. Even taking a pretrained network and retraining a small portion of it
to specialize it on a new dataset doesn’t necessarily require specialized hardware. You
can follow along with everything we do in part 1 of this book using a standard per-
sonal computer or laptop.

However, we anticipate that completing a full training run for the more advanced
examples in part 2 will require a CUDA-capable GPU. The default parameters used in
part 2 assume a GPU with 8 GB of RAM (we suggest an NVIDIA GTX 1070 or better),
but those can be adjusted if your hardware has less RAM available. To be clear: such
hardware is not mandatory if you're willing to wait, but running on a GPU cuts train-
ing time by at least an order of magnitude (and usually it’s 40-50x faster). Taken indi-
vidually, the operations required to compute parameter updates are fast (from
fractions of a second to a few seconds) on modern hardware like a typical laptop CPU.
The issue is that training involves running these operations over and over, many, many
times, incrementally updating the network parameters to minimize the training error.

Moderately large networks can take hours to days to train from scratch on large,
real-world datasets on workstations equipped with a good GPU. That time can be
reduced by using multiple GPUs on the same machine, and even further on clusters
of machines equipped with multiple GPUs. These setups are less prohibitive to access
than it sounds, thanks to the offerings of cloud computing providers. DAWNBench
(https://dawn.cs.stanford.edu/benchmark/index.html) is an interesting initiative
from Stanford University aimed at providing benchmarks on training time and cloud
computing costs related to common deep learning tasks on publicly available datasets.

So, if there’s a GPU around by the time you reach part 2, then great. Otherwise, we
suggest checking out the offerings from the various cloud platforms, many of which offer
GPU-enabled Jupyter Notebooks with PyTorch preinstalled, often with a free quota. Goo-
gle Colaboratory (https://colab.research.google.com) is a great place to start.

The last consideration is the operating system (OS). PyTorch has supported Linux
and macOS from its first release, and it gained Windows support in 2018. Since cur-
rent Apple laptops do not include GPUs that support CUDA, the precompiled macOS
packages for PyTorch are CPU-only. Throughout the book, we will try to avoid assum-
ing you are running a particular OS, although some of the scripts in part 2 are shown
as if running from a Bash prompt under Linux. Those scripts’ command lines should
convert to a Windows-compatible form readily. For convenience, code will be listed as
if running from a Jupyter Notebook when possible.

https://colab.research.google.com
https://dawn.cs.stanford.edu/benchmark/index.html

14

151

CHAPTER 1 Introducing deep learning and the PyTorch Library

For installation information, please see the Get Started guide on the official
PyTorch website (https://pytorch.org/get-started/locally). We suggest that Windows
users install with Anaconda or Miniconda (https://www.anaconda.com/distribution
or https://docs.conda.io/en/latest/miniconda.html). Other operating systems like
Linux typically have a wider variety of workable options, with Pip being the most com-
mon package manager for Python. We provide a requirements.txt file that pip can use
to install dependencies. Of course, experienced users are free to install packages in
the way that is most compatible with your preferred development environment.

Part 2 has some nontrivial download bandwidth and disk space requirements as
well. The raw data needed for the cancer-detection project in part 2 is about 60 GB to
download, and when uncompressed it requires about 120 GB of space. The com-
pressed data can be removed after decompressing it. In addition, due to caching some
of the data for performance reasons, another 80 GB will be needed while training.
You will need a total of 200 GB (at minimum) of free disk space on the system that will
be used for training. While it is possible to use network storage for this, there might be
training speed penalties if the network access is slower than local disk. Preferably you
will have space on a local SSD to store the data for fast retrieval.

Using Jupyter Notebooks

We’re going to assume you’ve installed PyTorch and the other dependencies and have
verified that things are working. Earlier we touched on the possibilities for following
along with the code in the book. We are going to be making heavy use of Jupyter Note-
books for our example code. A Jupyter Notebook shows itself as a page in the browser
through which we can run code interactively. The code is evaluated by a kernel, a process
running on a server that is ready to receive code to execute and send back the results,
which are then rendered inline on the page. A notebook maintains the state of the ker-
nel, like variables defined during the evaluation of code, in memory until it is termi-
nated or restarted. The fundamental unit with which we interact with a notebook is a
cell: a box on the page where we can type code and have the kernel evaluate it (through
the menu item or by pressing Shift-Enter). We can add multiple cells in a notebook, and
the new cells will see the variables we created in the earlier cells. The value returned by
the last line of a cell will be printed right below the cell after execution, and the same
goes for plots. By mixing source code, results of evaluations, and Markdown-formatted
text cells, we can generate beautiful interactive documents. You can read everything
about Jupyter Notebooks on the project website (https://jupyter.org).

At this point, you need to start the notebook server from the root directory of the
code checkout from GitHub. How exactly starting the server looks depends on the
details of your OS and how and where you installed Jupyter. If you have questions, feel
free to ask on the book’s forum.” Once started, your default browser will pop up,
showing a list of local notebook files.

® https://forums.manning.com/forums/deep-learning-with-pytorch

https://pytorch.org/get-started/locally
https://www.anaconda.com/distribution
https://docs.conda.io/en/latest/miniconda.html
https://forums.manning.com/forums/deep-learning-with-pytorch
https://jupyter.org

Summary 15

NOTE Jupyter Notebooks are a powerful tool for expressing and investigating
ideas through code. While we think that they make for a good fit for our use
case with this book, they’re not for everyone. We would argue that it’s import-
ant to focus on removing friction and minimizing cognitive overhead, and
that’s going to be different for everyone. Use what you like during your exper-
imentation with PyTorch.

Full working code for all listings from the book can be found at the book’s website
(www.manning.com/books/deep-learning-with-pytorch) and in our repository on
GitHub (https://github.com/deep-learning-with-pytorch/dlwpt-code).

1.6 Exercises

Start Python to get an interactive prompt.
What Python version are you using? We hope it is at least 3.6!
Can you import torch? What version of PyTorch do you get?
What is the result of torch.cuda.is_available()? Does it match your
expectation based on the hardware you’re using?
Start the Jupyter notebook server.
What version of Python is Jupyter using?
Is the location of the torch library used by Jupyter the same as the one you
imported from the interactive prompt?

1.7 Summary
Deep learning models automatically learn to associate inputs and desired out-
puts from examples.
Libraries like PyTorch allow you to build and train neural network models
efficiently.
PyTorch minimizes cognitive overhead while focusing on flexibility and speed.
It also defaults to immediate execution for operations.
TorchScript allows us to precompile models and invoke them not only from
Python but also from C++ programs and on mobile devices.
Since the release of PyTorch in early 2017, the deep learning tooling ecosystem
has consolidated significantly.

PyTorch provides a number of utility libraries to facilitate deep learning projects.

https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code

Pretrained networks

This chapter covers

Running pretrained image-recognition models
An introduction to GANs and CycleGAN

Captioning models that can produce text
descriptions of images

Sharing models through Torch Hub

We closed our first chapter promising to unveil amazing things in this chapter, and
now it’s time to deliver. Computer vision is certainly one of the fields that have
been most impacted by the advent of deep learning, for a variety of reasons. The
need to classify or interpret the content of natural images existed, very large data-
sets became available, and new constructs such as convolutional layers were
invented and could be run quickly on GPUs with unprecedented accuracy. All of
these factors combined with the internet giants’ desire to understand pictures
taken by millions of users with their mobile devices and managed on said giants’
platforms. Quite the perfect storm.

We are going to learn how to use the work of the best researchers in the field by
downloading and running very interesting models that have already been trained on
open, large-scale datasets. We can think of a pretrained neural network as similar to

16

2.1

A pretrained network that recognizes the subject of an image 17

a program that takes inputs and generates outputs. The behavior of such a program is
dictated by the architecture of the neural network and by the examples it saw during
training, in terms of desired input-output pairs, or desired properties that the output
should satisfy. Using an off-the-shelf model can be a quick way to jump-start a deep
learning project, since it draws on expertise from the researchers who designed the
model, as well as the computation time that went into training the weights.

In this chapter, we will explore three popular pretrained models: a model that can
label an image according to its content, another that can fabricate a new image from a
real image, and a model that can describe the content of an image using proper
English sentences. We will learn how to load and run these pretrained models in
PyTorch, and we will introduce PyTorch Hub, a set of tools through which PyTorch
models like the pretrained ones we’ll discuss can be easily made available through a
uniform interface. Along the way, we’ll discuss data sources, define terminology like
label, and attend a zebra rodeo.

If you’re coming to PyTorch from another deep learning framework, and you’d
rather jump right into learning the nuts and bolts of PyTorch, you can get away with
skipping to the next chapter. The things we’ll cover in this chapter are more fun than
foundational and are somewhat independent of any given deep learning tool. That’s
not to say they’re not important! But if you’ve worked with pretrained models in other
deep learning frameworks, then you already know how powerful a tool they can be.
And if you're already familiar with the generative adversarial network (GAN) game,
you don’t need us to explain it to you.

We hope you keep reading, though, since this chapter hides some important skills
under the fun. Learning how to run a pretrained model using PyTorch is a useful
skill—full stop. It’s especially useful if the model has been trained on a large dataset.
We will need to get accustomed to the mechanics of obtaining and running a neural
network on real-world data, and then visualizing and evaluating its outputs, whether
we trained it or not.

A pretrained network that recognizes the subject of an image

As our first foray into deep learning, we’ll run a state-of-the-art deep neural network
that was pretrained on an object-recognition task. There are many pretrained net-
works that can be accessed through source code repositories. It is common for
researchers to publish their source code along with their papers, and often the code
comes with weights that were obtained by training a model on a reference dataset.
Using one of these models could enable us to, for example, equip our next web ser-
vice with image-recognition capabilities with very little effort.

The pretrained network we’ll explore here was trained on a subset of the ImageNet
dataset (http://imagenet.stanford.edu). ImageNetis a very large dataset of over 14 mil-
lion images maintained by Stanford University. All of the images are labeled with a hier-
archy of nouns that come from the WordNet dataset (http://wordnet.princeton.edu),
which is in turn a large lexical database of the English language.

http://imagenet.stanford.edu
http://wordnet.princeton.edu

18

CHAPTER 2 Pretrained networks

The ImageNet dataset, like several other public datasets, has its origin in academic
competitions. Competitions have traditionally been some of the main playing fields
where researchers at institutions and companies regularly challenge each other.
Among others, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has
gained popularity since its inception in 2010. This particular competition is based on
a few tasks, which can vary each year, such as image classification (telling what object
categories the image contains), object localization (identifying objects’ position in
images), object detection (identifying and labeling objects in images), scene classifica-
tion (classifying a situation in an image), and scene parsing (segmenting an image
into regions associated with semantic categories, such as cow, house, cheese, hat). In
particular, the image-classification task consists of taking an input image and produc-
ing a list of 5 labels out of 1,000 total categories, ranked by confidence, describing the
content of the image.

The training set for ILSVRC consists of 1.2 million images labeled with one of
1,000 nouns (for example, “dog”), referred to as the class of the image. In this sense,
we will use the terms label and class interchangeably. We can take a peek at images
from ImageNet in figure 2.1.

Figure 2.1 A small sample of ImageNet images

A pretrained network that recognizes the subject of an image 19

PRETRAINED
WEIGHTS MAX .
SCoRE mab!ud.clams Bt
Al Umé%x *
RES‘.\'.ZE. FORWARD
Dok CENTER, AND PASS 000 L000
IMAGE NORMALIZE SCORES LABELS

Figure 2.2 The inference process

211

We are going to end up being able to take our own images and feed them into our
pretrained model, as pictured in figure 2.2. This will result in a list of predicted labels
for that image, which we can then examine to see what the model thinks our image is.
Some images will have predictions that are accurate, and others will not!

The input image will first be preprocessed into an instance of the multidimen-
sional array class torch.Tensor. Itis an RGB image with height and width, so this ten-
sor will have three dimensions: the three color channels, and two spatial image
dimensions of a specific size. (We’ll getinto the details of what a tensor is in chapter 3,
but for now, think of it as being like a vector or matrix of floating-point numbers.)
Our model will take that processed input image and pass it into the pretrained net-
work to obtain scores for each class. The highest score corresponds to the most likely
class according to the weights. Each class is then mapped one-to-one onto a class label.
That output is contained in a torch.Tensor with 1,000 elements, each representing
the score associated with that class.

Before we can do all that, we’ll need to get the network itself, take a peek under
the hood to see how it’s structured, and learn about how to prepare our data before
the model can use it.

Obtaining a pretrained network for image recognition

As discussed, we will now equip ourselves with a network trained on ImageNet. To do
so, we’ll take a look at the TorchVision project (https://github.com/pytorch/vision),
which contains a few of the best-performing neural network architectures for com-
puter vision, such as AlexNet (http://mng.bz/lo6z), ResNet (https://arxiv.org/pdf/
1512.03385.pdf), and Inception v3 (https://arxiv.org/pdf/1512.00567.pdf). It also
has easy access to datasets like ImageNet and other utilities for getting up to speed
with computer vision applications in PyTorch. We’ll dive into some of these further
along in the book. For now, let’s load up and run two networks: first AlexNet, one of
the early breakthrough networks for image recognition; and then a residual network,
ResNet for short, which won the ImageNet classification, detection, and localization

https://github.com/pytorch/vision
http://mng.bz/lo6z
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.00567.pdf

20

21.2

CHAPTER 2 Pretrained networks

competitions, among others, in 2015. If you didn’t get PyTorch up and running in
chapter 1, now is a good time to do that.

The predefined models can be found in torchvision.models (code/plch2/2
_pre_trained_networks.ipynb):

In[1]:
from torchvision import models

We can take a look at the actual models:

In[2]:
dir (models)

Out[2]:

['AlexNet "',
'DenseNet ',
'Inception3',
'ResNet ',
'SqueezeNet ',
'VGG',
'alexnet',
'densenet’,
'densenetl21"',

'resnet',
'resnetl101"',
'resnetlb52',

The capitalized names refer to Python classes that implement a number of popular
models. They differ in their architecture—thatis, in the arrangement of the operations
occurring between the input and the output. The lowercase names are convenience
functions that return models instantiated from those classes, sometimes with different
parameter sets. For instance, resnet101 returns an instance of ResNet with 101 layers,
resnet18 has 18 layers, and so on. We’ll now turn our attention to AlexNet.

AlexNet

The AlexNet architecture won the 2012 ILSVRC by a large margin, with a top-5 test
error rate (that is, the correct label must be in the top 5 predictions) of 15.4%. By
comparison, the second-best submission, which wasn’t based on a deep network,
trailed at 26.2%. This was a defining moment in the history of computer vision: the
moment when the community started to realize the potential of deep learning for
vision tasks. That leap was followed by constant improvement, with more modern
architectures and training methods getting top-5 error rates as low as 3%.

A pretrained network that recognizes the subject of an image 21

By today’s standards, AlexNet is a rather small network, compared to state-of-the-
art models. But in our case, it’s perfect for taking a first peek at a neural network that
does something and learning how to run a pretrained version of it on a new image.

We can see the structure of AlexNet in figure 2.3. Not that we have all the elements
for understanding it now, but we can anticipate a few aspects. First, each block consists
of a bunch of multiplications and additions, plus a sprinkle of other functions in the
output that we’ll discover in chapter 5. We can think of it as a filter—a function that
takes one or more images as input and produces other images as output. The way it
does so is determined during training, based on the examples it has seen and on the
desired outputs for those.

ALEXNET
o
/ of_|o ;
— — of |o|N
2 KN N = _ o |o
_ - (] 0
1\ - v
\ \ofl L
280 384 256 -0
256 E Ld\,OOO
4,090 4,096

a6

Figure 2.3 The AlexNet architecture

In figure 2.3, input images come in from the left and go through five stacks of filters,
each producing a number of output images. After each filter, the images are reduced
in size, as annotated. The images produced by the last stack of filters are laid out as a
4,096-element 1D vector and classified to produce 1,000 output probabilities, one for
each output class.

In order to run the AlexNet architecture on an input image, we can create an
instance of the AlexNet class. This is how it’s done:

In(3]:
alexnet = models.AlexNet ()

At this point, alexnet is an object that can run the AlexNet architecture. It’s not
essential for us to understand the details of this architecture for now. For the time
being, AlexNet is just an opaque object that can be called like a function. By providing

22

2.1.3

214

CHAPTER 2 Pretrained networks

alexnet with some precisely sized input data (we’ll see shortly what this input data
should be), we will run a forward pass through the network. That is, the input will run
through the first set of neurons, whose outputs will be fed to the next set of neurons,
all the way to the final output. Practically speaking, assuming we have an input object
of the right type, we can run the forward pass with output = alexnet (input).

But if we did that, we would be feeding data through the whole network to pro-
duce ... garbage! That’s because the network is uninitialized: its weights, the numbers
by which inputs are added and multiplied, have not been trained on anything—the
network itself is a blank (or rather, random) slate. We’d need to either train it from
scratch or load weights from prior training, which we’ll do now.

To this end, let’s go back to the models module. We learned that the uppercase
names correspond to classes that implement popular architectures for computer
vision. The lowercase names, on the other hand, are functions that instantiate models
with predefined numbers of layers and units and optionally download and load pre-
trained weights into them. Note that there’s nothing essential about using one of
these functions: they just make it convenient to instantiate the model with a number
of layers and units that matches how the pretrained networks were built.

ResNet

Using the resnet101 function, we’ll now instantiate a 101-layer convolutional neural
network. Just to put things in perspective, before the advent of residual networks in
2015, achieving stable training at such depths was considered extremely hard. Resid-
ual networks pulled a trick that made it possible, and by doing so, beat several bench-
marks in one sweep that year.

Let’s create an instance of the network now. We’ll pass an argument that will
instruct the function to download the weights of resnet101 trained on the ImageNet
dataset, with 1.2 million images and 1,000 categories:

In[4]:
resnet = models.resnetl0l (pretrained=True)

While we’re staring at the download progress, we can take a minute to appreciate that
resnetl01 sports 44.5 million parameters—that’s a lot of parameters to optimize
automatically!

Ready, set, almost run

OK, what did we just get? Since we’re curious, we’ll take a peek at what a resnet101
looks like. We can do so by printing the value of the returned model. This gives us a
textual representation of the same kind of information we saw in 2.3, providing details
about the structure of the network. For now, this will be information overload, but as
we progress through the book, we’ll increase our ability to understand what this code
is telling us:

A pretrained network that recognizes the subject of an image 23

In[5]:
resnet

Out[5]:
ResNet (
(convl): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
bias=False)
(bnl): BatchNorm2d (64, eps=1le-05, momentum=0.1, affine=True,
track_running_ stats=True)
(relu): ReLU(inplace)
(maxpool) : MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,
ceil_mode=False)
(layerl) : Sequential (
(0) : Bottleneck(

)
(avgpool) : AvgPool2d(kernel_size=7, stride=1, padding=0)
(fc): Linear (in_features=2048, out_features=1000, bias=True)

What we are seeing here is modules, one per line. Note that they have nothing in com-
mon with Python modules: they are individual operations, the building blocks of a
neural network. They are also called layers in other deep learning frameworks.

If we scroll down, we’ll see a lot of Bottleneck modules repeating one after the
other (101 of them!), containing convolutions and other modules. That’s the anat-
omy of a typical deep neural network for computer vision: a more or less sequential
cascade of filters and nonlinear functions, ending with a layer (fc) producing scores
for each of the 1,000 output classes (out_features).

The resnet variable can be called like a function, taking as input one or more
images and producing an equal number of scores for each of the 1,000 ImageNet
classes. Before we can do that, however, we have to preprocess the input images so
they are the right size and so that their values (colors) sit roughly in the same numeri-
cal range. In order to do that, the torchvision module provides transforms, which
allow us to quickly define pipelines of basic preprocessing functions:

In[6]:
from torchvision import transforms
preprocess = transforms.Compose ([

transforms.Resize (256),

transforms.CenterCrop (224),

transforms.ToTensor (),

transforms.Normalize (
mean=[0.485, 0.456, 0.4067,
std=[0.229, 0.224, 0.225]

) 1)

In this case, we defined a preprocess function that will scale the input image to 256 x
256, crop the image to 224 x 224 around the center, transform it to a tensor (a
PyTorch multidimensional array: in this case, a 3D array with color, height, and

24

CHAPTER 2 Pretrained networks

width), and normalize its RGB (red, green, blue) components so that they have
defined means and standard deviations. These need to match what was presented to
the network during training, if we want the network to produce meaningful answers.
We’ll go into more depth about transforms when we dive into making our own image-
recognition models in section 7.1.3.

We can now grab a picture of our favorite dog (say, bobby.jpg from the GitHub repo),
preprocess it, and then see what ResNet thinks of it. We can start by loading an image
from the local filesystem using Pillow (https://pillow.readthedocs.io/en/stable), an
image-manipulation module for Python:

In[7]:
from PIL import Image
img = Image.open("../data/plch2/bobby.jpg")

If we were following along from a Jupyter Notebook, we would do the following to see
the picture inline (it would be shown where the <PIL.JpegImagePlugin.. is in the
following):

In[8]:

img

Out[8]:

<PIL.JpegImagePlugin.JdpegImageFile image mode=RGB size=1280x720 at
0x1B1601360B8>

Otherwise, we can invoke the show method, which will pop up a window with a viewer,
to see the image shown in figure 2.4:

>>> img.show ()

Figure 2.4 Bobby, our very special input image

https://pillow.readthedocs.io/en/stable

2.1.5

A pretrained network that recognizes the subject of an image 25

Next, we can pass the image through our preprocessing pipeline:

In[9]:
img_t = preprocess (img)

Then we can reshape, crop, and normalize the input tensor in a way that the network
expects. We’ll understand more of this in the next two chapters; hold tight for now:

In[10]:
import torch
batch_t = torch.unsqueeze(img_t, 0)

We’re now ready to run our model.

Run!

The process of running a trained model on new data is called inference in deep learn-
ing circles. In order to do inference, we need to put the network in eval mode:

In[11]:
resnet.eval ()

Out[11]:
ResNet (
(convl): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
bias=False)
(bnl): BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True,
track_running stats=True)
(relu) : ReLU(inplace)
(maxpool) : MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,
ceil_mode=False)
(layerl): Sequential (
(0) : Bottleneck(

)
(avgpool) : AvgPool2d(kernel_size=7, stride=1, padding=0)
(fc): Linear (in_features=2048, out_features=1000, bias=True)

)

If we forget to do that, some pretrained models, like batch normalization and dropout,
will not produce meaningful answers, just because of the way they work internally.
Now that eval has been set, we’re ready for inference:

In[12]:

out = resnet (batch_t)

out

out[l2]:

tensor([[-3.4803, -1.6618, -2.4515, -3.2662, -3.2466, -1.3611,
-2.0465, -2.5112, -1.3043, -2.8900, -1.6862, -1.3055,
2.8674, -3.7442, 1.5085, -3.2500, -2.4894, -0.3354,

0.1286, -1.1355, 3.3969, 4.4584]11)

26

CHAPTER 2 Pretrained networks

Astaggering set of operations involving 44.5 million parameters has just happened, pro-
ducing a vector of 1,000 scores, one per ImageNet class. That didn’t take long, did it?

We now need to find out the label of the class that received the highest score. This
will tell us what the model saw in the image. If the label matches how a human would
describe the image, that’s great! It means everything is working. If not, then either some-
thing went wrong during training, or the image is so different from what the model
expects that the model can’t process it properly, or there’s some other similar issue.

To see the list of predicted labels, we will load a text file listing the labels in the
same order they were presented to the network during training, and then we will pick
out the label at the index that produced the highest score from the network. Almost
all models meant for image recognition have output in a form similar to what we’re
about to work with.

Let’s load the file containing the 1,000 labels for the ImageNet dataset classes:

In[13]:
with open('../data/plch2/imagenet_classes.txt') as f:
labels = [line.strip() for line in f.readlines()]

At this point, we need to determine the index corresponding to the maximum score
in the out tensor we obtained previously. We can do that using the max function in
PyTorch, which outputs the maximum value in a tensor as well as the indices where
that maximum value occurred:

In[14]:
_, index = torch.max(out, 1)

We can now use the index to access the label. Here, index is not a plain Python num-
ber, but a one-element, one-dimensional tensor (specifically, tensor ([207])), so we
need to get the actual numerical value to use as an index into our labels list using
index[0]. We also use torch.nn. functional.softmax (http://mng.bz/BYnq) to nor-
malize our outputs to the range [0, 1], and divide by the sum. That gives us something
roughly akin to the confidence that the model has in its prediction. In this case, the
model is 96% certain that it knows what it’s looking at is a golden retriever:

In[15]:

percentage = torch.nn.functional.softmax(out, dim=1)[0] * 100
labels[index[0]], percentage[index[0]].item()

Out[1l5]:

('golden retriever', 96.29334259033203)

Uh oh, who’s a good boy?

Since the model produced scores, we can also find out what the second best, third
best, and so on were. To do this, we can use the sort function, which sorts the values
in ascending or descending order and also provides the indices of the sorted values in
the original array:

http://mng.bz/BYnq

2.2

A pretrained model that fakes it until it makes it 27

In[16]:

_, indices = torch.sort(out, descending=True)

[(labels[idx], percentage[idx].item()) for idx in indices[0][:5]]
Out[l6]:

[('golden retriever', 96.29334259033203),

('Labrador retriever', 2.80812406539917),

('cocker spaniel, English cocker spaniel, cocker', 0.28267428278923035),
('redbone', 0.2086310237646103),

('tennis ball', 0.11621569097042084)]

We see that the first four are dogs (redbone is a breed; who knew?), after which things
start to get funny. The fifth answer, “tennis ball,” is probably because there are enough
pictures of tennis balls with dogs nearby that the model is essentially saying, “There’s a
0.1% chance that I've completely misunderstood what a tennis ball is.” This is a great
example of the fundamental differences in how humans and neural networks view the
world, as well as how easy it is for strange, subtle biases to sneak into our data.

Time to play! We can go ahead and interrogate our network with random images
and see what it comes up with. How successful the network will be will largely depend
on whether the subjects were well represented in the training set. If we present an
image containing a subject outside the training set, it’s quite possible that the network
will come up with a wrong answer with pretty high confidence. It’s useful to experi-
ment and get a feel for how a model reacts to unseen data.

We’ve just run a network that won an image-classification competition in 2015. It
learned to recognize our dog from examples of dogs, together with a ton of other
real-world subjects. We’ll now see how different architectures can achieve other kinds
of tasks, starting with image generation.

A pretrained model that fakes it until it makes it

Let’s suppose, for a moment, that we’re career criminals who want to move into sell-
ing forgeries of “lost” paintings by famous artists. We’re criminals, not painters, so as
we paint our fake Rembrandts and Picassos, it quickly becomes apparent that they’'re
amateur imitations rather than the real deal. Even if we spend a bunch of time practic-
ing until we get a canvas that we can’t tell is fake, trying to pass it off at the local art
auction house is going to get us kicked out instantly. Even worse, being told “This is
clearly fake; get out,” doesn’t help us improve! We’d have to randomly try a bunch of
things, gauge which ones took slightly longer to recognize as forgeries, and emphasize
those traits on our future attempts, which would take far too long.

Instead, we need to find an art historian of questionable moral standing to inspect
our work and tell us exactly what it was that tipped them off that the painting wasn’t
legit. With that feedback, we can improve our output in clear, directed ways, until our
sketchy scholar can no longer tell our paintings from the real thing.

Soon, we’ll have our “Botticelli” in the Louvre, and their Benjamins in our pockets.
We’ll be rich!

28

221

CHAPTER 2 Pretrained networks

While this scenario is a bit farcical, the underlying technology is sound and will
likely have a profound impact on the perceived veracity of digital data in the years to
come. The entire concept of “photographic evidence” is likely to become entirely sus-
pect, given how easy it will be to automate the production of convincing, yet fake,
images and video. The only key ingredient is data. Let’s see how this process works.

The GAN game

In the context of deep learning, what we’ve just described is known as the GAN game,
where two networks, one acting as the painter and the other as the art historian, com-
pete to outsmart each other at creating and detecting forgeries. GAN stands for gener-
ative adversarial network, where generative means something is being created (in this
case, fake masterpieces), adversarial means the two networks are competing to out-
smart the other, and well, network is pretty obvious. These networks are one of the
most original outcomes of recent deep learning research.

Remember that our overarching goal is to produce synthetic examples of a class of
images that cannot be recognized as fake. When mixed in with legitimate examples, a
skilled examiner would have trouble determining which ones are real and which are
our forgeries.

The generator network takes the role of the painter in our scenario, tasked with pro-
ducing realistic-looking images, starting from an arbitrary input. The discriminator net-
work is the amoral art inspector, needing to tell whether a given image was fabricated
by the generator or belongs in a set of real images. This two-network design is atypical
for most deep learning architectures but, when used to implement a GAN game, can
lead to incredible results.

Figure 2.5 shows a rough picture of what’s going on. The end goal for the generator
is to fool the discriminator into mixing up real and fake images. The end goal for the
discriminator is to find out when it’s being tricked, but it also helps inform the gener-
ator about the identifiable mistakes in the generated images. At the start, the generator
produces confused, three-eyed monsters that look nothing like a Rembrandt portrait.
The discriminator is easily able to distinguish the muddled messes from the real paint-
ings. As training progresses, information flows back from the discriminator, and the
generator uses it to improve. By the end of training, the generator is able to produce
convincing fakes, and the discriminator no longer is able to tell which is which.

Note that “Discriminator wins” or “Generator wins” shouldn’t be taken literally—
there’s no explicit tournament between the two. However, both networks are trained
based on the outcome of the other network, which drives the optimization of the
parameters of each network.

This technique has proven itself able to lead to generators that produce realistic
images from nothing but noise and a conditioning signal, like an attribute (for exam-
ple, for faces: young, female, glasses on) or another image. In other words, a well-
trained generator learns a plausible model for generating images that look real even
when examined by humans.

222

A pretrained model that fakes it until it makes it 29

DISCRIMINATOR

CENERATOR o
EQO” |REAL! |

\gp——
2 — %m FAKE! l
o GENERATED o« DISCRIMINATOR WINS
B3y 5o 3
=5 53
ech eSi
B Byg
A 0 l LOOKS
‘163 — g&%’ LEGLT! J
GENERATOR WINS

Figure 2.5 Concept of a GAN game

CycleGAN
An interesting evolution of this concept is the CycleGAN. A CycleGAN can turn
images of one domain into images of another domain (and back), without the need
for us to explicitly provide matching pairs in the training set.

In figure 2.6, we have a CycleGAN workflow for the task of turning a photo of a
horse into a zebra, and vice versa. Note that there are two separate generator net-

works, as well as two distinct discriminators.

INPUT Dg
)
/9 —> W
/4
REAL
2ERRA/
...SAME PROCESS STARTING

REAL EROM ZERRA...

HORSE!

Figure 2.6 A CycleGAN trained to the point that it can fool both discriminator networks

30

2.2.3

CHAPTER 2 Pretrained networks

As the figure shows, the first generator learns to produce an image conforming to a tar-
get distribution (zebras, in this case) starting from an image belonging to a different
distribution (horses), so that the discriminator can’t tell if the image produced from a
horse photo is actually a genuine picture of a zebra or not. At the same time—and
here’s where the Cycle prefix in the acronym comes in—the resulting fake zebra is sent
through a different generator going the other way (zebra to horse, in our case), to be
judged by another discriminator on the other side. Creating such a cycle stabilizes the
training process considerably, which addresses one of the original issues with GANs.

The fun part is that at this point, we don’t need matched horse/zebra pairs as
ground truths (good luck getting them to match poses!). It’s enough to start from a
collection of unrelated horse images and zebra photos for the generators to learn
their task, going beyond a purely supervised setting. The implications of this model go
even further than this: the generator learns how to selectively change the appearance
of objects in the scene without supervision about what’s what. There’s no signal indi-
cating that manes are manes and legs are legs, but they get translated to something
that lines up with the anatomy of the other animal.

A network that turns horses into zebras

We can play with this model right now. The CycleGAN network has been trained on a
dataset of (unrelated) horse images and zebra images extracted from the ImageNet
dataset. The network learns to take an image of one or more horses and turn them all
into zebras, leaving the rest of the image as unmodified as possible. While humankind
hasn’t held its breath over the last few thousand years for a tool that turn horses into
zebras, this task showcases the ability of these architectures to model complex real-
world processes with distant supervision. While they have their limits, there are hints
that in the near future we won’t be able to tell real from fake in a live video feed,
which opens a can of worms that we’ll duly close right now.

Playing with a pretrained CycleGAN will give us the opportunity to take a step
closer and look at how a network—a generator, in this case—is implemented. We’ll
use our old friend ResNet. We’ll define a ResNetGenerator class offscreen. The code
is in the first cell of the 3_cyclegan.ipynb file, but the implementation isn’t relevant
right now, and it’s too complex to follow until we’ve gotten a lot more PyTorch experi-
ence. Right now, we’re focused on what it can do, rather than how it does it. Let’s
instantiate the class with default parameters (code/plch2/3_cyclegan.ipynb):

In[2]:
netG = ResNetGenerator ()

The netG model has been created, but it contains random weights. We mentioned ear-
lier that we would run a generator model that had been pretrained on the horse2zebra
dataset, whose training set contains two sets of 1068 and 1335 images of horses and
zebras, respectively. The dataset be found at http://mng.bz/8pKP. The weights of the
model have been saved in a .pth file, which is nothing but a pickle file of the model’s

http://mng.bz/8pKP

A pretrained model that fakes it until it makes it 31

tensor parameters. We can load those into ResNetGenerator using the model’s load
_state_dict method:

In[3]:

model_path = '../data/plch2/horse2zebra_0.4.0.pth'
model_data = torch.load(model_path)
netG.load_state_dict (model_data)

At this point, netG has acquired all the knowledge it achieved during training. Note
that this is fully equivalent to what happened when we loaded resnet101 from torch-
vision in section 2.1.3; but the torchvision.resnetl101 function hid the loading
from us.

Let’s put the network in eval mode, as we did for resnet101:

In[4]:
netG.eval ()

out[4]:
ResNetGenerator (
(model) : Sequential (

Printing out the model as we did earlier, we can appreciate that it’s actually pretty con-
densed, considering what it does. It takes an image, recognizes one or more horses in
it by looking at pixels, and individually modifies the values of those pixels so that what
comes out looks like a credible zebra. We won’t recognize anything zebra-like in the
printout (or in the source code, for that matter): that’s because there’s nothing zebra-
like in there. The network is a scaffold—the juice is in the weights.

We’re ready to load a random image of a horse and see what our generator pro-
duces. First, we need to import PIL and torchvision:

In[5]:
from PIL import Image
from torchvision import transforms

Then we define a few input transformations to make sure data enters the network with
the right shape and size:

In[6]:
preprocess = transforms.Compose ([transforms.Resize(256),
transforms.ToTensor ()])

Let’s open a horse file (see figure 2.7):

In[7]:
img = Image.open("../data/plch2/horse.jpg")
img

32

CHAPTER 2 Pretrained networks

Figure 2.7 A man riding a
horse. The horse is not having it.

OK, there’s a dude on the horse. (Not for long, judging by the picture.) Anyhow, let’s
pass it through preprocessing and turn it into a properly shaped variable:

In[8]:

img_t = preprocess (img)

batch_t = torch.unsqueeze(img_t, 0)

We shouldn’t worry about the details right now. The important thing is that we follow
from a distance. At this point, batch_t can be sent to our model:

In[9]:
batch_out = netG(batch_t)

batch_out is now the output of the generator, which we can convert back to an image:

In[10]:

out_t = (batch_out.data.squeeze() + 1.0) / 2.0
out_img = transforms.ToPILImage () (out_t)

out_img.save('../data/plch2/zebra.jpg')
out_img

Out[10]:

<PIL.Image.Image image mode=RGB size=316x256 at 0x23B24634F98>

Oh, man. Who rides a zebra that way? The resulting image (figure 2.8) is not perfect,
but consider that it is a bit unusual for the network to find someone (sort of) riding on
top of a horse. It bears repeating that the learning process has not passed through
direct supervision, where humans have delineated tens of thousands of horses or man-
ually Photoshopped thousands of zebra stripes. The generator has learned to produce
an image that would fool the discriminator into thinking that was a zebra, and there was
nothing fishy about the image (clearly the discriminator has never been to a rodeo).

2.3

A pretrained network that describes scenes 33

Figure 2.8 A man riding a
zebra. The zebra is not having it.

Many other fun generators have been developed using adversarial training or other
approaches. Some of them are capable of creating credible human faces of nonexis-
tent individuals; others can translate sketches into real-looking pictures of imaginary
landscapes. Generative models are also being explored for producing real-sounding
audio, credible text, and enjoyable music. Itis likely that these models will be the basis
of future tools that support the creative process.

On a serious note, it’s hard to overstate the implications of this kind of work. Tools
like the one we just downloaded are only going to become higher quality and more
ubiquitous. Face-swapping technology, in particular, has gotten considerable media
attention. Searching for “deep fakes” will turn up a plethora of example content!
(though we must note that there is a nontrivial amount of not-safe-for-work content
labeled as such; as with everything on the internet, click carefully).

So far, we’ve had a chance to play with a model that sees into images and a model
that generates new images. We’ll end our tour with a model that involves one more,
fundamental ingredient: natural language.

A pretrained network that describes scenes

In order to get firsthand experience with a model involving natural language, we will
use a pretrained image-captioning model, generously provided by Ruotian Luo.? It is
an implementation of the NeuralTalk2 model by Andrej Karpathy. When presented
with a natural image, this kind of model generates a caption in English that describes
the scene, as shown in figure 2.9. The model is trained on a large dataset of images

! A relevant example is described in the Vox article “Jordan Peele’s simulated Obama PSA is a double-edged
warning against fake news,” by Aja Romano; http://mng.bz/dxBz (warning: coarse language).

? We maintain a clone of the code at https://github.com/deep-learning-with-pytorch/ImageCaptioning
.pytorch.

http://mng.bz/dxBz (warning: coarse language
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch

34

23.1

CHAPTER 2 Pretrained networks

“"AN OPD-LOOKING

(,:UC; —> 0X)¢, > FELLOW HOLDING
s 0 1 A PINK BALLOON”
- == O

l I
CONVOLUTIONAL RECURRENT
(IMAGE RECOGNITION) (TEXT GENERATION)

TRAINED END-TO-END ON
IMAGE-CAPTION PAIRS

Figure 2.9 Concept of a captioning model

along with a paired sentence description: for example, “A Tabby cat is leaning on a
wooden table, with one paw on a laser mouse and the other on a black laptop.”®

This captioning model has two connected halves. The first half of the model is a
network that learns to generate “descriptive” numerical representations of the scene
(Tabby cat, laser mouse, paw), which are then taken as input to the second half. That
second half is a recurrent neural network that generates a coherent sentence by putting
those numerical descriptions together. The two halves of the model are trained
together on image-caption pairs.

The second half of the model is called recurrent because it generates its outputs
(individual words) in subsequent forward passes, where the input to each forward pass
includes the outputs of the previous forward pass. This generates a dependency of the
next word on words that were generated earlier, as we would expect when dealing with
sentences or, in general, with sequences.

NeuralTalk2

The NeuralTalk2 model can be found at https://github.com/deep-learning-with-
pytorch/ImageCaptioning.pytorch. We can place a set of images in the data directory
and run the following script:

python eval.py --model ./data/FC/fc-model.pth
--infos_path ./data/FC/fc-infos.pkl --image_folder ./data

Let’s try it with our horse.jpg image. It says, “A person riding a horse on a beach.”
Quite appropriate.

® Andrej Karpathy and Li Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions,”
https://cs.stanford.edu/people/karpathy/cvpr2015.pdf.

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch
https://github.com/deep-learning-with-pytorch/ImageCaptioning.pytorch

24

Torch Hub 35

Now, just for fun, let’s see if our CycleGAN can also fool this NeuralTalk2 model.
Let’s add the zebra.jpg image in the data folder and rerun the model: “A group of
zebras are standing in a field.” Well, it got the animal right, but it saw more than one
zebra in the image. Certainly this is not a pose that the network has ever seen a zebra
in, nor has it ever seen a rider on a zebra (with some spurious zebra patterns). In addi-
tion, it is very likely that zebras are depicted in groups in the training dataset, so there
might be some bias that we could investigate. The captioning network hasn’t
described the rider, either. Again, it’s probably for the same reason: the network
wasn’t shown a rider on a zebra in the training dataset. In any case, this is an impres-
sive feat: we generated a fake image with an impossible situation, and the captioning
network was flexible enough to get the subject right.

We’d like to stress that something like this, which would have been extremely hard
to achieve before the advent of deep learning, can be obtained with under a thousand
lines of code, with a general-purpose architecture that knows nothing about horses or
zebras, and a corpus of images and their descriptions (the MS COCO dataset, in this
case). No hardcoded criterion or grammar—everything, including the sentence,
emerges from patterns in the data.

The network architecture in this last case was, in a way, more complex than the
ones we saw earlier, as it includes two networks. One is recurrent, but it was built out
of the same building blocks, all of which are provided by PyTorch.

At the time of this writing, models such as these exist more as applied research or
novelty projects, rather than something that has a well-defined, concrete use. The
results, while promising, just aren’t good enough to use ... yet. With time (and addi-
tional training data), we should expect this class of models to be able to describe the
world to people with vision impairment, transcribe scenes from video, and perform
other similar tasks.

Torch Hub

Pretrained models have been published since the early days of deep learning, but
until PyTorch 1.0, there was no way to ensure that users would have a uniform inter-
face to get them. TorchVision was a good example of a clean interface, as we saw ear-
lier in this chapter; but other authors, as we have seen for CycleGAN and NeuralTalk2,
chose different designs.

PyTorch 1.0 saw the introduction of Torch Hub, which is a mechanism through
which authors can publish a model on GitHub, with or without pretrained weights,
and expose it through an interface that PyTorch understands. This makes loading a
pretrained model from a third party as easy as loading a TorchVision model.

All it takes for an author to publish a model through the Torch Hub mechanism is
to place a file named hubconf.py in the root directory of the GitHub repository. The
file has a very simple structure:

36

-

CHAPTER 2 Pretrained networks

tional list of modules the code depends on

dependencies = ['torch', 'math']

def some_entry_ fn(*args, **kwargs):
model = build_some_model (*args, **kwargs)
return model

One or more functions to be
exposed to users as entry points
for the repository. These functions
should initialize models according
def another_entry_fn(*args, **kwargs): to the arguments and return them.
model = build_another_model (*args, **kwargs)
return model

In our quest for interesting pretrained models, we can now search for GitHub reposi-
tories that include hubconf.py, and we’ll know right away that we can load them using
the torch.hub module. Let’s see how this is done in practice. To do that, we’ll go back
to TorchVision, because it provides a clean example of how to interact with Torch Hub.

Let’s visit https://github.com/pytorch/vision and notice that it contains a hub-
conf.py file. Great, that checks. The first thing to do is to look in that file to see the entry
points for the repo—we’ll need to specify them later. In the case of TorchVision, there
are two: resnet18 and resnet50. We already know what these do: they return an 18-
layer and a 50-layer ResNet model, respectively. We also see that the entry-point func-
tions include a pretrained keyword argument. If True, the returned models will be ini-
tialized with weights learned from ImageNet, as we saw earlier in the chapter.

Now we know the repo, the entry points, and one interesting keyword argument.
That’s about all we need to load the model using torch.hub, without even cloning the
repo. That’s right, PyTorch will handle that for us:

import torch

; Name and branch
from torch import hub

of the GitHub repo
Name of the entry-
resnetl8_model = hub.load('pytorch/vision:master', pohnfuncﬁon
'resnetl8',
pretrained=True)
Keyword argument

This manages to download a snapshot of the master branch of the pytorch/vision
repo, along with the weights, to a local directory (defaults to .torch/hub in our home
directory) and run the resnet18 entry-point function, which returns the instantiated
model. Depending on the environment, Python may complain that there’s a module
missing, like PIL. Torch Hub won’t install missing dependencies, but it will report
them to us so that we can take action.

At this point, we can invoke the returned model with proper arguments to run a
forward pass on it, the same way we did earlier. The nice part is that now every model
published through this mechanism will be accessible to us using the same modalities,
well beyond vision.

https://github.com/pytorch/vision

2.5

Conclusion 37

Note that entry points are supposed to return models; but, strictly speaking, they
are not forced to. For instance, we could have an entry point for transforming inputs
and another one for turning the output probabilities into a text label. Or we could
have an entry point for just the model, and another that includes the model along
with the pre- and postprocessing steps. By leaving these options open, the PyTorch
developers have provided the community with just enough standardization and a lot
of flexibility. We’ll see what patterns will emerge from this opportunity.

Torch Hub is quite new at the time of writing, and there are only a few models pub-
lished this way. We can get at them by Googling “github.com hubconf.py.” Hopefully
the list will grow in the future, as more authors share their models through this channel.

Conclusion

We hope this was a fun chapter. We took some time to play with models created with
PyTorch, which were optimized to carry out specific tasks. In fact, the more enterpris-
ing of us could already put one of these models behind a web server and start a busi-
ness, sharing the profits with the original authors!* Once we learn how these models
are built, we will also be able to use the knowledge we gained here to download a pre-
trained model and quickly fine-tune it on a slightly different task.

We will also see how building models that deal with different problems on differ-
ent kinds of data can be done using the same building blocks. One thing that PyTorch
does particularly right is providing those building blocks in the form of an essential
toolset—PyTorch is not a very large library from an API perspective, especially when
compared with other deep learning frameworks.

This book does not focus on going through the complete PyTorch API or review-
ing deep learning architectures; rather, we will build hands-on knowledge of these
building blocks. This way, you will be able to consume the excellent online documen-
tation and repositories on top of a solid foundation.

Starting with the next chapter, we’ll embark on a journey that will enable us to
teach our computer skills like those described in this chapter from scratch, using
PyTorch. We’ll also learn that starting from a pretrained network and fine-tuning it on
new data, without starting from scratch, is an effective way to solve problems when the
data points we have are not particularly numerous. This is one further reason pre-
trained networks are an important tool for deep learning practitioners to have. Time
to learn about the first fundamental building block: tensors.

* Contact the publisher for franchise opportunities!

38

2.6

2.7

CHAPTER 2 Pretrained networks

Exercises

Feed the image of the golden retriever into the horse-to-zebra model.
What do you need to do to the image to prepare it?
What does the output look like?
Search GitHub for projects that provide a hubconf.py file.
How many repositories are returned?
Find an interesting-looking project with a hubconf.py. Can you understand
the purpose of the project from the documentation?
Bookmark the project, and come back after you’ve finished this book. Can
you understand the implementation?

Summary

A pretrained network is a model that has already been trained on a dataset.
Such networks can typically produce useful results immediately after loading
the network parameters.

By knowing how to use a pretrained model, we can integrate a neural network
into a project without having to design or train it.

AlexNet and ResNet are two deep convolutional networks that set new bench-
marks for image recognition in the years they were released.

Generative adversarial networks (GANs) have two parts—the generator and the
discriminator—that work together to produce output indistinguishable from
authentic items.

CycleGAN wuses an architecture that supports converting back and forth
between two different classes of images.

NeuralTalk2 uses a hybrid model architecture to consume an image and pro-
duce a text description of the image.

Torch Hub is a standardized way to load models and weights from any project
with an appropriate hubconf.py file.

It starts with a tensor

This chapter covers

Understanding tensors, the basic data structure
in PyTorch

Indexing and operating on tensors

Interoperating with NumPy multidimensional
arrays

Moving computations to the GPU for speed

In the previous chapter, we took a tour of some of the many applications that deep
learning enables. They invariably consisted of taking data in some form, like images
or text, and producing data in another form, like labels, numbers, or more images
or text. Viewed from this angle, deep learning really consists of building a system
that can transform data from one representation to another. This transformation is
driven by extracting commonalities from a series of examples that demonstrate the
desired mapping. For example, the system might note the general shape of a dog
and the typical colors of a golden retriever. By combining the two image properties,
the system can correctly map images with a given shape and color to the golden
retriever label, instead of a black lab (or a tawny tomcat, for that matter). The
resulting system can consume broad swaths of similar inputs and produce meaning-
ful output for those inputs.

39

40

3.1

CHAPTER 3 It starts with a tensor

The process begins by converting our input into floating-point numbers. We will
cover converting image pixels to numbers, as we see in the first step of figure 3.1, in chap-
ter 4 (along with many other types of data). But before we can get to that, in this chapter,
we learn how to deal with all the floating-point numbers in PyTorch by using tensors.

The world as floating-point numbers

Since floating-point numbers are the way a network deals with information, we need a
way to encode real-world data of the kind we want to process into something digestible
by a network and then decode the output back to something we can understand and

use for our purpose.
O~ "SON”
1% —> “SEASIDE’
“"SCENERY”

!
Q0 OO0

f.

o.q | |04 o0
| 0.23| |04 :
220 oMe | |o4s 052
o"‘[‘, vee 0.0
\ - cer ...

INeUT INTERMEDIATE oLTPLT
REPRESENTATION ~ REPRESENTATIONS REPRESENTATION
SIMILAR INPUTS

SHOULD LEAD TO
CLOSE REPRESENTATIONS

(ESPECIALLY AT DEEPER LEVELS)

Figure 3.1 A deep neural network learns how to transform an input representation to an output
representation. (Note: The numbers of neurons and outputs are not to scale.)

A deep neural network typically learns the transformation from one form of data to
another in stages, which means the partially transformed data between each stage can
be thought of as a sequence of intermediate representations. For image recognition,
early representations can be things such as edge detection or certain textures like fur.
Deeper representations can capture more complex structures like ears, noses, or eyes.

In general, such intermediate representations are collections of floating-point
numbers that characterize the input and capture the data’s structure in a way that is
instrumental for describing how inputs are mapped to the outputs of the neural net-
work. Such characterization is specific to the task at hand and is learned from relevant

The world as floating-point numbers 41

examples. These collections of floating-point numbers and their manipulation are at
the heart of modern Al—we will see several examples of this throughout the book.

It’s important to keep in mind that these intermediate representations (like those
shown in the second step of figure 3.1) are the results of combining the input with the
weights of the previous layer of neurons. Each intermediate representation is unique
to the inputs that preceeded it.

Before we can begin the process of converting our data to floating-point input, we
must first have a solid understanding of how PyTorch handles and stores data—as
input, as intermediate representations, and as output. This chapter will be devoted to
precisely that.

To this end, PyTorch introduces a fundamental data structure: the tensor. We
already bumped into tensors in chapter 2, when we ran inference on pretrained net-
works. For those who come from mathematics, physics, or engineering, the term tensor
comes bundled with the notion of spaces, reference systems, and transformations
between them. For better or worse, those notions do not apply here. In the context of
deep learning, tensors refer to the generalization of vectors and matrices to an arbi-
trary number of dimensions, as we can see in figure 3.2. Another name for the same
concept is multidimensional array. The dimensionality of a tensor coincides with the
number of indexes used to refer to scalar values within the tensor.

i
u 4 6o T 5 7\
3 \ 13 q Q43
5 125 352
SCALAR VECTOR MATRIX TENSOR TENSOR
X[2]=5 X, ol=1 X[0,2,1]=5 XL, 3, ...2] = ¢
ob B 2D 3P \

N-D DATA > N INDICES

Figure 3.2 Tensors are the building blocks for representing data in PyTorch.

PyTorch is not the only library that deals with multidimensional arrays. NumPy is by
far the most popular multidimensional array library, to the point that it has now argu-
ably become the lingua franca of data science. PyTorch features seamless interoperabil-
ity with NumPy, which brings with it first-class integration with the rest of the scientific
libraries in Python, such as SciPy (www.scipy.org), Scikitlearn (https://scikit-learn
.org), and Pandas (https://pandas.pydata.org).

Compared to NumPy arrays, PyTorch tensors have a few superpowers, such as the
ability to perform very fast operations on graphical processing units (GPUs),
distribute operations on multiple devices or machines, and keep track of the graph of

https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org
https://pandas.pydata.org
https://www.scipy.org/

42

3.2

3.2.1

CHAPTER 3 It starts with a tensor

computations that created them. These are all important features when implementing
amodern deep learning library.

We’ll start this chapter by introducing PyTorch tensors, covering the basics in
order to set things in motion for our work in the rest of the book. First and foremost,
we’ll learn how to manipulate tensors using the PyTorch tensor library. This includes
things like how the data is stored in memory, how certain operations can be per-
formed on arbitrarily large tensors in constant time, and the aforementioned NumPy
interoperability and GPU acceleration. Understanding the capabilities and API of ten-
sors is important if they’re to become go-to tools in our programming toolbox. In the
next chapter, we’ll put this knowledge to good use and learn how to represent several
different kinds of data in a way that enables learning with neural networks.

Tensors: Multidimensional arrays

We have already learned that tensors are the fundamental data structure in PyTorch. A
tensor is an array: that is, a data structure that stores a collection of numbers that are
accessible individually using an index, and that can be indexed with multiple indices.

From Python lists to PyTorch tensors

Let’s see 1ist indexing in action so we can compare it to tensor indexing. Take a list
of three numbers in Python (.code/plch3/1_tensors.ipynb):

In[1l]:
a = [1.0, 2.0, 1.0]

We can access the first element of the list using the corresponding zero-based index:

Inf[2]:
al0]

Out[2]:
1.0

In[3]:
al2] = 3.0
a

Oout[3]:
[1.0, 2.0, 3.0]

It is not unusual for simple Python programs dealing with vectors of numbers, such as
the coordinates of a 2D line, to use Python lists to store the vectors. As we will see in
the following chapter, using the more efficient tensor data structure, many types of
data—from images to time series, and even sentences—can be represented. By defin-
ing operations over tensors, some of which we’ll explore in this chapter, we can slice
and manipulate data expressively and efficiently at the same time, even from a high-
level (and not particularly fast) language such as Python.

3.2.2

3.2.3

Tensors: Multidimensional arrays 43

Constructing our first tensors

Let’s construct our first PyTorch tensor and see what it looks like. It won’t be a partic-
ularly meaningful tensor for now, just three ones in a column:

In[4]: Imports the torch module

import torch

a = torch.ones(3) . .

a Creates a one-dimensional
tensor of size 3 filled with 1s

Ooutl[4]:
tensor ([1., 1., 1.1)

In[5]:
all]

Out[5]:
tensor(1l.)

In[6]:
float(alll)

Out[6]:
1.0

In[7]:
al2] = 2.0
a

Oout[7]:
tensor([1., 1., 2.1)

After importing the torch module, we call a function that creates a (one-dimensional)
tensor of size 3 filled with the value 1.0. We can access an element using its zero-based
index or assign a new value to it. Although on the surface this example doesn’t differ
much from a list of number objects, under the hood things are completely different.

The essence of tensors

Python lists or tuples of numbers are collections of Python objects that are individually
allocated in memory, as shown on the left in figure 3.3. PyTorch tensors or NumPy
arrays, on the other hand, are views over (typically) contiguous memory blocks contain-
ing unboxed Cnumeric types rather than Python objects. Each elementis a 32-bit (4-byte)
float in this case, as we can see on the right side of figure 3.3. This means storing a 1D
tensor of 1,000,000 float numbers will require exactly 4,000,000 contiguous bytes, plus
a small overhead for the metadata (such as dimensions and numeric type).

Say we have a list of coordinates we’d like to use to represent a geometrical object:
perhaps a 2D triangle with vertices at coordinates (4, 1), (5, 3), and (2, 1). The
example is not particularly pertinent to deep learning, but it’s easy to follow. Instead
of having coordinates as numbers in a Python list, as we did earlier, we can use a

CHAPTER 3 It starts with a tensor

MEMOR\I MEMORY
)P 7
.o, 22,03 1.6 .. (.o, 2.2, 0.3, 1.6, ...7)
£YTHON LIST TENSOR OR ARRAY

Figure 3.3 Python object (boxed) numeric values versus tensor (unboxed array)
numeric values

one-dimensional tensor by storing Xs in the even indices and Ys in the odd indices,
like this:

Using .zeros is just a way to get
In[8]: an appropriately sized array.
torch.zeros (6)

points = .

points[0] = 4.0 . .
points[1] = 1.0 We overwrite those zeros with
points(2] = 5.0 the values we actually want.
points[3] = 3.0

points[4] = 2.0

points[5] = 1.0

We can also pass a Python list to the constructor, to the same effect:

In[9]:
points = torch.tensor([4.0, 1.0, 5.0, 3.0, 2.0, 1.0])
points

Out[9]:
tensor([4., 1., 5., 3., 2., 1.1)

To get the coordinates of the first point, we do the following:

In[10]:
float (points[0]), float(points[1l])

Out[10]:
(4.0, 1.0)

This is OK, although it would be practical to have the first index refer to individual 2D
points rather than point coordinates. For this, we can use a 2D tensor:

In[11]:
points = torch.tensor([[4.0, 1.0]1, [5.0, 3.01, [2.0, 1.011)
points

Tensors: Multidimensional arrays 45

Oout[ll]:

tensor ([[4., 1.]
[5., 3.]
[2., 1.]

1)
Here, we pass a list of lists to the constructor. We can ask the tensor about its shape:

In[12]:
points.shape

out[l2]:
torch.Size([3, 21])

This informs us about the size of the tensor along each dimension. We could also use
zeros or ones to initialize the tensor, providing the size as a tuple:

In[13]:
points = torch.zeros(3, 2)
points
Out[13]:
tensor ([[0., 0.7,
[0., 0.1,
[0., 0.11)

Now we can access an individual element in the tensor using two indices:

In[14]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.011)
points

out[l4]:
tensor([[4., 1.7,
[5., 3.1,
[2., 1.11)
In[15]:

points[0, 1]

Out[1l5]:
tensor(1l.)

This returns the Y-coordinate of the zeroth point in our dataset. We can also access
the first element in the tensor as we did before to get the 2D coordinates of the first
point:

In[16]:
points[0]

Out[l6]:
tensor([4., 1.1)

46

3.3

3.4

CHAPTER 3 It starts with a tensor

The output is another tensor that presents a different view of the same underlying data.
The new tensor is a 1D tensor of size 2, referencing the values of the first row in the
points tensor. Does this mean a new chunk of memory was allocated, values were copied
into it, and the new memory was returned wrapped in a new tensor object? No, because
that would be very inefficient, especially if we had millions of points. We’ll revisit how
tensors are stored later in this chapter when we cover views of tensors in section 3.7.

Indexing tensors
What if we need to obtain a tensor containing all points but the first? That’s easy using
range indexing notation, which also applies to standard Python lists. Here’s a
reminder:
All elements in the list From element 1 inclusive
In[53]: to element 4 exclusive
some_list = list(range(6))
some_list[:] From element 1 inclusive
some_list[1:4] to the end of the list
some_list[1:]
some_list[:4] N
some_1ist[:-1] Frorln the st:rt °f|th,e list
some_list[1:4:2] to element 4 exclusive
From element 1 inclusive to From the start of the list to
element 4 exclusive, in steps of 2 one before the last element
To achieve our goal, we can use the same notation for PyTorch tensors, with the added
benefit that, just as in NumPy and other Python scientific libraries, we can use range
indexing for each of the tensor’s dimensions:
All rows after the first; All rows after the
implicitly all columns first; all columns
In[54]:
points([1:] All rows after the
points[1l:, :] first; first column
points([1l:, 0]
points[None] . . .
Adds a dimension of size 1,
just like unsqueeze
In addition to using ranges, PyTorch features a powerful form of indexing, called
advanced indexing, which we will look at in the next chapter.
Named tensors

The dimensions (or axes) of our tensors usually index something like pixel locations
or color channels. This means when we want to index into a tensor, we need to
remember the ordering of the dimensions and write our indexing accordingly. As
data is transformed through multiple tensors, keeping track of which dimension con-
tains what data can be error-prone.

Named tensors 47

To make things concrete, imagine that we have a 3D tensor like img_t from section
2.1.4 (we will use dummy data for simplicity here), and we want to convert it to gray-
scale. We looked up typical weights for the colors to derive a single brightness value:!

In[2]:
img_t = torch.randn(3, 5, 5) # shape [channels, rows, columns]
weights = torch.tensor([0.2126, 0.7152, 0.07221])

We also often want our code to generalize—for example, from grayscale images repre-
sented as 2D tensors with height and width dimensions to color images adding a third
channel dimension (as in RGB), or from a single image to a batch of images. In sec-
tion 2.1.4, we introduced an additional batch dimension in batch_t; here we pretend
to have a batch of 2:

In[3]:
batch_t = torch.randn(2, 3, 5, 5) # shape [batch, channels, rows, columns]

So sometimes the RGB channels are in dimension 0, and sometimes they are in dimen-
sion 1. But we can generalize by counting from the end: they are always in dimension
-3, the third from the end. The lazy, unweighted mean can thus be written as follows:

In[4]:

img_gray_naive = img_t.mean (-3)
batch_gray_naive = batch_t.mean(-3)
img_gray_naive.shape, batch_gray naive.shape

out[4]:
(torch.Size([5, 5]), torch.Size([2, 5, 51))

But now we have the weight, too. PyTorch will allow us to multiply things that are the
same shape, as well as shapes where one operand is of size 1 in a given dimension. It
also appends leading dimensions of size 1 automatically. This is a feature called broad-
casting. batch_t of shape (2, 3, 5, 5) is multiplied by unsqueezed_weights of shape (3,
1, 1), resulting in a tensor of shape (2, 3, 5, 5), from which we can then sum the third
dimension from the end (the three channels):

In[5]:

unsqueezed_weights = weights.unsqueeze(-1) .unsqueeze_(-1)
img_weights = (img_t * unsqueezed_weights)

batch_weights = (batch_t * unsqueezed_weights)

img_gray_weighted = img_weights.sum(-3)
batch_gray_weighted = batch_weights.sum(-3)
batch_weights.shape, batch_t.shape, unsqueezed_weights.shape

Out[5]:
(torch.Size([2, 3, 5, 5]), torch.Size([2, 3, 5, 5]), torch.Size([3, 1, 11]))

! As perception is not trivial to norm, people have come up with many weights. For example, see
https://en.wikipedia.org/wiki/Luma_(video).

https://en.wikipedia.org/wiki/Luma_(video)

48

CHAPTER 3 It starts with a tensor

Because this gets messy quickly—and for the sake of efficiency—the PyTorch function
einsum (adapted from NumPy) specifies an indexing mini-language?® giving index
names to dimensions for sums of such products. As often in Python, broadcasting—a
form of summarizing unnamed things—is done using three dots '.."; but don’t worry
too much about einsum, because we will not use it in the following:

In[6]:
img_gray weighted_fancy = torch.einsum('...chw,c->...hw', img_t, weights)
batch_gray_weighted_fancy = torch.einsum('...chw,c->...hw', batch_t, weights)

batch_gray_weighted_fancy.shape

Oout[6]:
torch.Size([2, 5, 5])

As we can see, there is quite a lot of bookkeeping involved. This is error-prone, espe-
cially when the locations where tensors are created and used are far apart in our code.
This has caught the eye of practitioners, and so it has been suggested® that the dimen-
sion be given a name instead.

PyTorch 1.3 added named tensors as an experimental feature (see https://pytorch
.org/tutorials/intermediate /named_tensor_tutorial.html and https://pytorch.org/
docs/stable/named_tensor.html). Tensor factory functions such as tensor and rand
take a names argument. The names should be a sequence of strings:

In[7]:
weights_named = torch.tensor([0.2126, 0.7152, 0.0722], names=['channels'])
weights_named

Oout[7]:
tensor ([0.2126, 0.7152, 0.0722], names=('channels',))

When we already have a tensor and want to add names (but not change existing
ones), we can call the method refine_names on it. Similar to indexing, the ellipsis (...)
allows you to leave out any number of dimensions. With the rename sibling method,
you can also overwrite or drop (by passing in None) existing names:

In[8]:

img_named = img_t.refine_names(..., 'channels', 'rows', 'columns')
batch_named = batch_t.refine_names(..., 'channels', 'rows',6 'columns')
print ("img named:", img_named.shape, img_named.names)

print ("batch named:", batch_named.shape, batch_named.names)

Out[8]:

img named: torch.Size([3, 5, 5]) ('channels', 'rows', 'columns')

batch named: torch.Size([2, 3, 5, 5]) (None, 'channels', 'rows', 'columns')

2 Tim Rocktischel’s blog post “Einsum is All You Need—Einstein Summation in Deep Learning” (https://

rockt.github.io/2018/04/30/einsum) gives a good overview.

3 See Sasha Rush, “Tensor Considered Harmful,” Harvardnlp, http://nlp.seas.harvard.edu/NamedTensor.

https://pytorch.org/tutorials/intermediate/named_tensor_tutorial.html
https://pytorch.org/tutorials/intermediate/named_tensor_tutorial.html
https://pytorch.org/tutorials/intermediate/named_tensor_tutorial.html
https://pytorch.org/docs/stable/named_tensor.html
https://pytorch.org/docs/stable/named_tensor.html
https://pytorch.org/docs/stable/named_tensor.html
https://rockt.github.io/2018/04/30/einsum
https://rockt.github.io/2018/04/30/einsum
https://rockt.github.io/2018/04/30/einsum
http://nlp.seas.harvard.edu/NamedTensor

Named tensors 49

For operations with two inputs, in addition to the usual dimension checks—whether
sizes are the same, or if one is 1 and can be broadcast to the other—PyTorch will now
check the names for us. So far, it does not automatically align dimensions, so we need
to do this explicitly. The method align_as returns a tensor with missing dimensions
added and existing ones permuted to the right order:

In[9]:
weights_aligned = weights_named.align_as (img_named)
weights_aligned.shape, weights_aligned.names

Oout[9]:
(torch.Size([3, 1, 1]), ('channels', 'rows', 'columns'))

Functions accepting dimension arguments, like sum, also take named dimensions:

In[10]:
gray_named = (img_named * weights_aligned) .sum('channels"')
gray_named.shape, gray_named.names

Oout[10]:
(torch.Size([5, 5]1), ('rows', 'columns'))

If we try to combine dimensions with different names, we get an error:

gray_named = (img_named[..., :3] * weights_named) .sum('channels"')

RuntimeError: Error when

attempting to broadcast dims ['channels', 'rows',
'columns'] and dims ['channels']: dim 'columns' and dim 'channels'
are at the same position from the right but do not match.

If we want to use tensors outside functions that operate on named tensors, we need to
drop the names by renaming them to None. The following gets us back into the world
of unnamed dimensions:

In[12]:
gray_plain = gray_named.rename (None)
gray_plain.shape, gray_plain.names

out[l2]:
(torch.Size([5, 5]1), (None, None))

Given the experimental nature of this feature at the time of writing, and to avoid
mucking around with indexing and alignment, we will stick to unnamed in the
remainder of the book. Named tensors have the potential to eliminate many sources
of alignment errors, which—if the PyTorch forum is any indication—can be a source
of headaches. It will be interesting to see how widely they will be adopted.

50

3.5

3.5.1

CHAPTER 3 It starts with a tensor

Tensor element types

So far, we have covered the basics of how tensors work, but we have not yet touched on
what kinds of numeric types we can store in a Tensor. As we hinted at in section 3.2,
using the standard Python numeric types can be suboptimal for several reasons:

Numbers in Python are objects. Whereas a floating-point number might require
only, for instance, 32 bits to be represented on a computer, Python will convert
it into a fullfledged Python object with reference counting, and so on. This
operation, called boxing, is not a problem if we need to store a small number of
numbers, but allocating millions gets very inefficient.

Lists in Python are meant for sequential collections of objects. There are no operations
defined for, say, efficiently taking the dot product of two vectors, or summing vec-
tors together. Also, Python lists have no way of optimizing the layout of their con-
tents in memory, as they are indexable collections of pointers to Python objects
(of any kind, not just numbers). Finally, Python lists are one-dimensional, and
although we can create lists of lists, this is again very inefficient.

The Python interpreter is slow compared to optimized, compiled code. Performing math-
ematical operations on large collections of numerical data can be much faster
using optimized code written in a compiled, low-level language like C.

For these reasons, data science libraries rely on NumPy or introduce dedicated data
structures like PyTorch tensors, which provide efficient low-level implementations of
numerical data structures and related operations on them, wrapped in a convenient
high-level API. To enable this, the objects within a tensor must all be numbers of the
same type, and PyTorch must keep track of this numeric type.

Specifying the numeric type with dtype
The dtype argument to tensor constructors (that is, functions like tensor, zeros, and
ones) specifies the numerical data (d) type that will be contained in the tensor. The
data type specifies the possible values the tensor can hold (integers versus floating-
point numbers) and the number of bytes per value.* The dtype argument is deliber-
ately similar to the standard NumPy argument of the same name. Here’s a list of the
possible values for the dtype argument:

torch.float32 or torch.float: 32-bit floating-point

torch.float64 or torch.double: 64-bit, double-precision floating-point

torch.floatl6 or torch.half: 16-bit, half-precision floating-point

torch.int8: signed 8-bit integers

torch.uint8: unsigned 8-bit integers

torch.intl6 or torch.short: signed 16-bit integers

torch.int32 or torch.int: signed 32-bit integers

torch.int64 or torch.long: signed 64-bit integers

torch.bool: Boolean

1 And signed-ness, in the case of uints8.

3.5.2

3.5.3

Tensor element types 51

The default data type for tensors is 32-bit floating-point.

A dtype for every occasion

As we will see in future chapters, computations happening in neural networks are typ-
ically executed with 32-bit floating-point precision. Higher precision, like 64-bit, will
not buy improvements in the accuracy of a model and will require more memory and
computing time. The 16-bit floating-point, half-precision data type is not present
natively in standard CPUs, but it is offered on modern GPUs. It is possible to switch to
half-precision to decrease the footprint of a neural network model if needed, with a
minor impact on accuracy.

Tensors can be used as indexes in other tensors. In this case, PyTorch expects
indexing tensors to have a 64-bit integer data type. Creating a tensor with integers as
arguments, such as using torch.tensor ([2, 2]), will create a 64-bit integer tensor by
default. As such, we’ll spend most of our time dealing with float32 and int64.

Finally, predicates on tensors, such as points > 1.0, produce bool tensors indicat-
ing whether each individual element satisfies the condition. These are the numeric
types in a nutshell.

Managing a tensor’s dtype attribute

In order to allocate a tensor of the right numeric type, we can specify the proper
dtype as an argument to the constructor. For example:

In[47]:
double_points = torch.ones (10, 2, dtype=torch.double)
short_points = torch.tensor ([[1, 21, [3, 411, dtype=torch.short)

We can find out about the dtype for a tensor by accessing the corresponding attribute:

In[48]:
short_points.dtype

Oout[48]:
torch.intl6

We can also cast the output of a tensor creation function to the right type using the
corresponding casting method, such as

In[49]:
double_points = torch.zeros (10, 2).double()
short_points = torch.ones (10, 2).short()

or the more convenient to method:
In[50]:

double_points = torch.zeros (10, 2).to(torch.double)
short_points = torch.ones (10, 2).to(dtype=torch.short)

52

3.6

CHAPTER 3 It starts with a tensor

Under the hood, to checks whether the conversion is necessary and, if so, does it. The
dtype-named casting methods like float are shorthands for to, but the to method
can take additional arguments that we’ll discuss in section 3.9.

When mixing input types in operations, the inputs are converted to the larger type
automatically. Thus, if we want 32-bit computation, we need to make sure all our
inputs are (at most) 32-bit:

In[517]: rand initializes the tensor elements to

points_64 = torch.rand(5, dtype=torch.double) <F4Jrandon1numbersbenuem1Oand1.

points_short = points_64.to(torch.short)
points_64 * points_short # works from PyTorch 1.3 onwards

Out[51]:
tensor([0., 0., 0., 0., 0.], dtype=torch.floaté64)

The tensor API

At this point, we know what PyTorch tensors are and how they work under the hood.
Before we wrap up, it is worth taking a look at the tensor operations that PyTorch
offers. It would be of little use to list them all here. Instead, we’re going to get a gen-
eral feel for the API and establish a few directions on where to find things in the
online documentation at http://pytorch.org/docs.

First, the vast majority of operations on and between tensors are available in the
torch module and can also be called as methods of a tensor object. For instance, the
transpose function we encountered earlier can be used from the torch module

In[717]:
a = torch.ones (3, 2)
a_t = torch.transpose(a, 0, 1)

a.shape, a_t.shape

Out[71]:
(torch.Size([3, 2]), torch.Size([2, 3]))

or as a method of the a tensor:

In[72]:
a = torch.ones (3, 2)
a_t = a.transpose(0, 1)

a.shape, a_t.shape

Oout[72]:
(torch.Size([3, 2]1), torch.Size([2, 31))

There is no difference between the two forms; they can be used interchangeably.
We mentioned the online docs earlier (http://pytorch.org/docs). They are
exhaustive and well organized, with the tensor operations divided into groups:

http://pytorch.org/docs
http://pytorch.org/docs

3.7

Tensors: Scenic views of storage 53

Creation ops—Functions for constructing a tensor, like ones and from_numpy

Indexing, slicing, joining, mutating ops—Functions for changing the shape, stride,

or content of a tensor, like transpose

Math ops—Functions for manipulating the content of the tensor through

computations

— Pointwise ops—Functions for obtaining a new tensor by applying a function to
each element independently, like abs and cos

— Reduction ops—Functions for computing aggregate values by iterating
through tensors, like mean, std, and norm

— Comparison ops—Functions for evaluating numerical predicates over tensors,
like equal and max

— Spectral ops—Functions for transforming in and operating in the frequency
domain, like stft and hamming window

— Other operations—Special functions operating on vectors, like cross, or matri-
ces, like trace

— BLAS and LAPACK operations—Functions following the Basic Linear Algebra
Subprograms (BLAS) specification for scalar, vector-vector, matrix-vector,
and matrix-matrix operations

Random sampling—Functions for generating values by drawing randomly from

probability distributions, like randn and normal

Serialization—Functions for saving and loading tensors, like 1oad and save

Parallelism—Functions for controlling the number of threads for parallel CPU

execution, like set_num_threads

Take some time to play with the general tensor API. This chapter has provided all the
prerequisites to enable this kind of interactive exploration. We will also encounter sev-
eral of the tensor operations as we proceed with the book, starting in the next chapter.

Tensors: Scenic views of storage

It is time for us to look a bit closer at the implementation under the hood. Values in
tensors are allocated in contiguous chunks of memory managed by torch.Storage
instances. A storage is a one-dimensional array of numerical data: that is, a contiguous
block of memory containing numbers of a given type, such as float (32 bits repre-
senting a floating-point number) or int64 (64 bits representing an integer). A
PyTorch Tensor instance is a view of such a Storage instance that is capable of index-
ing into that storage using an offset and per-dimension strides.?

Multiple tensors can index the same storage even if they index into the data differ-
ently. We can see an example of this in figure 3.4. In fact, when we requested
points[0] in section 3.2, what we got back is another tensor that indexes the same

Storage may not be directly accessible in future PyTorch releases, but what we show here still provides a good
mental picture of how tensors work under the hood.

54

371

CHAPTER 3 It starts with a tensor

TENSORS ||
(REFERENCING
THE SAME
STORAGE)
"START AT 0 L~ |
2 ROWS :
2 CoLy’ SR
; WHERE THE
TS NomesRS
sorace | |V]5]3]z N e
I}

Figure 3.4 Tensors are views of a Storage instance.

storage as the points tensor—just not all of it, and with different dimensionality (1D
versus 2D). The underlying memory is allocated only once, however, so creating alter-
nate tensor-views of the data can be done quickly regardless of the size of the data
managed by the Storage instance.

Indexing into storage
Let’s see how indexing into the storage works in practice with our 2D points. The stor-

age for a given tensor is accessible using the .storage property:

In[17]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]1])
points.storage ()

Oout[17]:

4.0

1.0

5.0

3.0

2.0

1.0

[torch.FloatStorage of size 6]

Even though the tensor reports itself as having three rows and two columns, the stor-
age under the hood is a contiguous array of size 6. In this sense, the tensor just knows
how to translate a pair of indices into a location in the storage.

We can also index into a storage manually. For instance:

In[18]:
points_storage = points.storage()
points_storage[0]

Out[18]:
4.0

3.7.2

3.8

Tensor metadata: Size, offset, and stride 55

In[19]:
points.storage () [1]

Out[19]:
1.0

We can’t index a storage of a 2D tensor using two indices. The layout of a storage is
always one-dimensional, regardless of the dimensionality of any and all tensors that
might refer to it.

At this point, it shouldn’t come as a surprise that changing the value of a storage
leads to changing the content of its referring tensor:

In[20]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]11)
points_storage = points.storage()
points_storage[0] = 2.0
points
Oout[20]:
tensor([[2., 1.7,
[5., 3.1,
[2., 1.11)

Modifying stored values: In-place operations

In addition to the operations on tensors introduced in the previous section, a small
number of operations exist only as methods of the Tensor object. They are recogniz-
able from a trailing underscore in their name, like zero_, which indicates that the
method operates in placeby modifying the input instead of creating a new output tensor
and returning it. For instance, the zero_ method zeros out all the elements of the input.
Any method without the trailing underscore leaves the source tensor unchanged and
instead returns a new tensor:

In[73]:

a = torch.ones(3, 2)

In[74]:

a.zero_ ()

a

out[74]:

tensor ([[0., 0.7,
[0., 0.1,
[0., 0.11)

Tensor metadata: Size, offset, and stride

In order to index into a storage, tensors rely on a few pieces of information that,
together with their storage, unequivocally define them: size, offset, and stride. How
these interact is shown in figure 3.5. The size (or shape, in NumPy parlance) is a tuple

56

381

CHAPTER 3 It starts with a tensor

B

OFFSET = | STRIDE = (3, 1)
+ -5 NEXT CoL (STRIDE[(]=
4
SIAERF J\|3M"iji]

.,
+3 3 NEXTROW (STRIPE[0]=3)

Figure 3.5 Relationship between a tensor’s offset, size, and stride. Here the tensor is a view
of a larger storage, like one that might have been allocated when creating a larger tensor.

indicating how many elements across each dimension the tensor represents. The stor-
age offset is the index in the storage corresponding to the first element in the tensor.
The stride is the number of elements in the storage that need to be skipped over to
obtain the next element along each dimension.

Views of another tensor’s storage

We can get the second point in the tensor by providing the corresponding index:

In[21]:

points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.011)
second_point = points[1]

second_point.storage_offset ()

Out[21]:
2
In[22]:

second_point.size()

out[22]:
torch.Size([2])

The resulting tensor has offset 2 in the storage (since we need to skip the first point,
which has two items), and the size is an instance of the Size class containing one

Tensor metadata: Size, offset, and stride 57

element, since the tensor is one-dimensional. It’s important to note that this is the
same information contained in the shape property of tensor objects:

In[23]:
second_point.shape

out[23]:
torch.Size([2])

The stride is a tuple indicating the number of elements in the storage that have to be
skipped when the index is increased by 1 in each dimension. For instance, our points
tensor has a stride of (2, 1):

In[24]:
points.stride ()

Oout[24]:
(2, 1)

Accessing an element 1, j in a 2D tensor results in accessing the storage_offset +
stride[0] * 1 + stride[l] * j element in the storage. The offset will usually be
zero; if this tensor is a view of a storage created to hold a larger tensor, the offset might
be a positive value.

This indirection between Tensor and Storage makes some operations inexpen-
sive, like transposing a tensor or extracting a subtensor, because they do not lead to
memory reallocations. Instead, they consist of allocating a new Tensor object with a
different value for size, storage offset, or stride.

We already extracted a subtensor when we indexed a specific point and saw the
storage offset increasing. Let’s see what happens to the size and stride as well:

In[25]:
second_point = points[1]
second_point.size()

Out[25]:
torch.Size([2])

In[26]:
second_point.storage_offset ()

Oout[26]:
2
In[27]:

second_point.stride()

out[27]:
(1,)

58

3.82

CHAPTER 3 It starts with a tensor

The bottom line is that the subtensor has one less dimension, as we would expect,
while still indexing the same storage as the original points tensor. This also means
changing the subtensor will have a side effect on the original tensor:

In[28]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]1)
second_point = points[1]
second_point[0] = 10.0
points
Out[28]:
tensor ([[4., 1.1,
[10., 3.1,
[2., 1.11)

This might not always be desirable, so we can eventually clone the subtensor into a
new tensor:

In[29]:
points = torch.tensor([[4.0, 1.0]1, [5.0, 3.01, [2.0, 1.011)
second_point = points[l].clone()
second_point[0] = 10.0
points
out[29]:
tensor ([[4., 1.],
[5., 3.1,
[2., 1.11)

Transposing without copying

Let’s try transposing now. Let’s take our points tensor, which has individual points in
the rows and X and Y coordinates in the columns, and turn it around so that individ-
ual points are in the columns. We take this opportunity to introduce the t function, a
shorthand alternative to transpose for two-dimensional tensors:

In[30]:

points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]1])

points

Out[30]:

tensor([[4., 1.1,
[5., 3.1,
[2., 1.11)

In[31]:

points_t = points.t()

points_t

Out[31]:

tensor ([[4., 5., 2.]

(1., 3., 1.11)

Tensor metadata: Size, offset, and stride 59

TIP To help build a solid understanding of the mechanics of tensors, it may
be a good idea to grab a pencil and a piece of paper and scribble diagrams
like the one in figure 3.5 as we step through the code in this section.

We can easily verify that the two tensors share the same storage

In[32]:
id(points.storage()) == id(points_t.storage())

Oout[32]:
True

and that they differ only in shape and stride:

In[33]:
points.stride ()

Oout[33]:

(2, 1)

In[34]:
points_t.stride()

Out[34]:
(1, 2)

This tells us that increasing the first index by one in points—for example, going from
points[0,0] to points[1, 0]—will skip along the storage by two elements, while increas-
ing the second index—from points [0, 0] to points [0, 1]—will skip along the storage by
one. In other words, the storage holds the elements in the tensor sequentially row by row.
We can transpose points into points_t, as shown in figure 3.6. We change the order
of the elements in the stride. After that, increasing the row (the first index of the ten-
sor) will skip along the storage by one, just like when we were moving along columns in
points. This is the very definition of transposing. No new memory is allocated: trans-
posing is obtained only by creating a new Tensor instance with different stride ordering
than the original.
-— SN
TRANSPOSE
_

—
STRIDE = (|,)

NEXT ROW

s 2[4]
gure 3.6 Transpose

NEXT CoL)eration applied to a tensor

60

3.8.3

3.84

CHAPTER 3 It starts with a tensor

Transposing in higher dimensions

Transposing in PyTorch is not limited to matrices. We can transpose a multidimen-
sional array by specifying the two dimensions along which transposing (flipping shape
and stride) should occur:

In[35]:
some_t = torch.ones(3, 4, 5)
transpose_t = some_t.transpose (0, 2)

some_t.shape

Out[35]:
torch.Size([3, 4, 51)

In[36]:
transpose_t.shape

Oout[36]:
torch.Size([5, 4, 31)

In[37]:
some_t.stride()

Out[37]:
(20, 5, 1)

In([38]:
transpose_t.stride()

Out[38]:
(1, 5, 20)

A tensor whose values are laid out in the storage starting from the rightmost dimen-
sion onward (that is, moving along rows for a 2D tensor) is defined as contiguous.
Contiguous tensors are convenient because we can visit them efficiently in order with-
out jumping around in the storage (improving data locality improves performance
because of the way memory access works on modern CPUs). This advantage of course
depends on the way algorithms visit.

Contiguous tensors

Some tensor operations in PyTorch only work on contiguous tensors, such as view,
which we’ll encounter in the next chapter. In that case, PyTorch will throw an infor-
mative exception and require us to call contiguous explicitly. It’s worth noting that
calling contiguous will do nothing (and will not hurt performance) if the tensor is
already contiguous.

In our case, points is contiguous, while its transpose is not:

In[39]:
points.is_contiguous ()

Tensor metadata: Size, offset, and stride 61

Out[39]:
True
In[40]:

points_t.is_contiguous()

Oout[40]:
False

We can obtain a new contiguous tensor from a non-contiguous one using the contigu-
ous method. The content of the tensor will be the same, but the stride will change, as
will the storage:

In[41]:
points = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]11)
points_t = points.t()
points_t
Oout[41]:
tensor([[4., 5., 2.1,
[1., 3., 1.11)
In[42]:

points_t.storage()

out[42]:

4.0

1.0

5.0

3.0

2.0

1.0

[torch.FloatStorage of size 6]

In[43]:
points_t.stride()

Out[43]:
(1, 2)

In[44]:
points_t_cont = points_t.contiguous ()
points_t_cont

out[44]:

tensor ([[4., 5., 2.1,
[1., 3., 1.11)

In[45]:

points_t_cont.stride()

Out[45]:
(3, 1)

62

3.9

CHAPTER 3 It starts with a tensor

In[46]:
points_t_cont.storage ()

Out[46]:

4.0

5.0

2.0

1.0

3.0

1.0

[torch.FloatStorage of size 6]

Notice that the storage has been reshuffled in order for elements to be laid out row-
by-row in the new storage. The stride has been changed to reflect the new layout.

As a refresher, figure 3.7 shows our diagram again. Hopefully it will all make sense
now that we’ve taken a good look at how tensors are built.

S

OFFSET = | STRIDE = (3, 1)
+ -5 NEXT CoL (sTRIDE[(]=
v
@’5 ,‘4}\'3!2[7’&)

[

+3 9 NEXT ROW (STRIPE[0]=3)

Figure 3.7 Relationship between a tensor’s offset, size, and stride. Here the tensor is a view
of a larger storage, like one that might have been allocated when creating a larger tensor.

Moving tensors to the GPU

So far in this chapter, when we’ve talked about storage, we’ve meant memory on the
CPU. PyTorch tensors also can be stored on a different kind of processor: a graphics
processing unit (GPU). Every PyTorch tensor can be transferred to (one of) the
GPU(s) in order to perform massively parallel, fast computations. All operations that
will be performed on the tensor will be carried out using GPU-specific routines that
come with PyTorch.

3.9.1

Moving tensors to the GPU 63

PyTorch support for various GPUs

As of mid-2019, the main PyTorch releases only have acceleration on GPUs that have
support for CUDA. PyTorch can run on AMD’s ROCm (https://rocm.github.io), and the
master repository provides support, but so far, you need to compile it yourself.
(Before the regular build process, you need to run tools/amd_build/build_amd.py
to translate the GPU code.) Support for Google’s tensor processing units (TPUs) is a
work in progress (https://github.com/pytorch/xla), with the current proof of concept
available to the public in Google Colab: https://colab.research.google.com. Imple-
mentation of data structures and kernels on other GPU technologies, such as
OpenCL, are not planned at the time of this writing.

Managing a tensor’s device attribute

In addition to dtype, a PyTorch Tensor also has the notion of device, which is where
on the computer the tensor data is placed. Here is how we can create a tensor on the
GPU by specifying the corresponding argument to the constructor:

In[64]:
points_gpu = torch.tensor([[4.0, 1.0], [5.0, 3.0], [2.0, 1.0]1], device='cuda')

We could instead copy a tensor created on the CPU onto the GPU using the to
method:

In[65]:
points_gpu = points.to(device='cuda')

Doing so returns a new tensor that has the same numerical data, but stored in the
RAM of the GPU, rather than in regular system RAM. Now that the data is stored
locally on the GPU, we’ll start to see the speedups mentioned earlier when perform-
ing mathematical operations on the tensor. In almost all cases, CPU- and GPU-based
tensors expose the same user-facing API, making it much easier to write code that is
agnostic to where, exactly, the heavy number crunching is running.

If our machine has more than one GPU, we can also decide on which GPU we allo-
cate the tensor by passing a zero-based integer identifying the GPU on the machine,
such as

In[66]:
points_gpu = points.to(device='cuda:0"')

At this point, any operation performed on the tensor, such as multiplying all elements
by a constant, is carried out on the GPU:

Multiplication performed on the CPU
In[67]:
points = 2 * points Multiplication performed

on the GPU

points_gpu = 2 * points.to(device='cuda')

https://rocm.github.io
https://github.com/pytorch/xla
https://colab.research.google.com

64

3.10

CHAPTER 3 It starts with a tensor

Note that the points_gpu tensor is not brought back to the CPU once the result has
been computed. Here’s what happened in this line:

The points tensor is copied to the GPU.

A new tensor is allocated on the GPU and used to store the result of the multi-
plication.

A handle to that GPU tensor is returned.

Therefore, if we also add a constant to the result

In[68]:
points_gpu = points_gpu + 4

the addition is still performed on the GPU, and no information flows to the CPU
(unless we print or access the resulting tensor). In order to move the tensor back to
the CPU, we need to provide a cpu argument to the to method, such as

In[69]:
points_cpu = points_gpu.to(device='cpu')

We can also use the shorthand methods cpu and cuda instead of the to method to
achieve the same goal:

In[70]:

points_gpu = points.cuda() <—— Defaults to GPU index 0
points_gpu = points.cuda(0)

points_cpu = points_gpu.cpul()

It’s also worth mentioning that by using the to method, we can change the placement
and the data type simultaneously by providing both device and dtype as arguments.

NumPy interoperability

We’ve mentioned NumPy here and there. While we do not consider NumPy a prereg-
uisite for reading this book, we strongly encourage you to become familiar with
NumPy due to its ubiquity in the Python data science ecosystem. PyTorch tensors can
be converted to NumPy arrays and vice versa very efficiently. By doing so, we can take
advantage of the huge swath of functionality in the wider Python ecosystem that has
built up around the NumPy array type. This zero-copy interoperability with NumPy
arrays is due to the storage system working with the Python buffer protocol
(https://docs.python.org/3/c-api/buffer.html).
To get a NumPy array out of our points tensor, we just call

In[55]:
points = torch.ones (3, 4)
points_np = points.numpy ()
points_np

Out[55]:

https://docs.python.org/3/c-api/buffer.html

3.11

Generalized tensors are tensors, too 65

array ([[1., 1., 1., 1.]
[1., 1., 1., 1.1
(1., 1., 1., 1.]

’

1, dtype=float32)

which will return a NumPy multidimensional array of the right size, shape, and
numerical type. Interestingly, the returned array shares the same underlying buffer
with the tensor storage. This means the numpy method can be effectively executed at
basically no cost, as long as the data sits in CPU RAM. It also means modifying the
NumPy array will lead to a change in the originating tensor. If the tensor is allocated
on the GPU, PyTorch will make a copy of the content of the tensor into a NumPy array
allocated on the CPU.
Conversely, we can obtain a PyTorch tensor from a NumPy array this way

In[56]:
points = torch.from_ numpy (points_np)

which will use the same buffer-sharing strategy we just described.

NOTE While the default numeric type in PyTorch is 32-bit floating-point, for
NumPy it is 64-bit. As discussed in section 3.5.2, we usually want to use 32-bit
floating-points, so we need to make sure we have tensors of dtype torch
.float after converting.

Generalized tensors are tensors, too

For the purposes of this book, and for the vast majority of applications in general, ten-
sors are multidimensional arrays, just as we’ve seen in this chapter. If we risk a peek
under the hood of PyTorch, there is a twist: how the data is stored under the hood is
separate from the tensor API we discussed in section 3.6. Any implementation that
meets the contract of that API can be considered a tensor!

PyTorch will cause the right computation functions to be called regardless of
whether our tensor is on the CPU or the GPU. This is accomplished through a dis-
patching mechanism, and that mechanism can cater to other tensor types by hooking
up the user-facing API to the right backend functions. Sure enough, there are other
kinds of tensors: some are specific to certain classes of hardware devices (like Google
TPUs), and others have data-representation strategies that differ from the dense array
style we’ve seen so far. For example, sparse tensors store only nonzero entries, along
with index information. The PyTorch dispatcher on the left in figure 3.8 is designed
to be extensible; the subsequent switching done to accommodate the various numeric
types of figure 3.8 shown on the right is a fixed aspect of the implementation coded
into each backend.

We will meet quantized tensors in chapter 15, which are implemented as another
type of tensor with a specialized computational backend. Sometimes the usual tensors
we use are called dense or strided to differentiate them from tensors using other mem-
ory layouts.

66

3.12

CHAPTER 3 It starts with a tensor

torch.add (s.5)

a.device
&lqyﬁ—

BI“SWL

D;Spa*'c‘nef P a(]/A cpu
"oisdem.cpp — o (lf:)fe/

3. is.cwdy on,. lO\n -') aJl cfm@»&‘(ln"’“.ﬁ)
3.is. spafso "ocr)-\ ¢Hlost
S \5,10% -

Figure 3.8 The dispatcher
in PyTorch is one of its key
infrastructure bits.

As with many things, the number of kinds of tensors has grown as PyTorch supports a
broader range of hardware and applications. We can expect new kinds to continue to
arise as people explore new ways to express and perform computations with PyTorch.

Serializing tensors

Creating a tensor on the fly is all well and good, but if the data inside is valuable, we will
want to save it to a file and load it back at some point. After all, we don’t want to have
to retrain a model from scratch every time we start running our program! PyTorch uses
pickle under the hood to serialize the tensor object, plus dedicated serialization code
for the storage. Here’s how we can save our points tensor to an ourpoints.t file:

In[57]:
torch.save(points, '../data/plch3/ourpoints.t"')

As an alternative, we can pass a file descriptor in lieu of the filename:
In[58]:

with open('../data/plch3/ourpoints.t','wb') as f:
torch.save (points, f)

Loading our points back is similarly a one-liner

In[59]:
points = torch.load('../data/plch3/ourpoints.t"')

or, equivalently,
In[60]:

with open('../data/plch3/ourpoints.t','rb') as f:
points = torch.load(f)

3.12.1

Serializing tensors 67

While we can quickly save tensors this way if we only want to load them with PyTorch,
the file format itself is not interoperable: we can’t read the tensor with software other
than PyTorch. Depending on the use case, this may or may not be a limitation, but we
should learn how to save tensors interoperably for those times when it is. We’ll look
next at how to do so.

Serializing to HDF5 with h5py

Every use case is unique, but we suspect needing to save tensors interoperably will be
more common when introducing PyTorch into existing systems that already rely on
different libraries. New projects probably won’t need to do this as often.

For those cases when you need to, however, you can use the HDF5 format and
library (www.hdfgroup.org/solutions/hdf5). HDF5 is a portable, widely supported
format for representing serialized multidimensional arrays, organized in a nested key-
value dictionary. Python supports HDF5 through the h5py library (www.hbpy.org),
which accepts and returns data in the form of NumPy arrays.

We can install h5py using

$ conda install hbpy

At this point, we can save our points tensor by converting it to a NumPy array (at no
cost, as we noted earlier) and passing it to the create_dataset function:

In[61]:
import h5py

f = hbpy.File('../data/plch3/ourpoints.hdf5', 'w')
dset = f.create_dataset('coords', data=points.numpy())
f.close()

Here 'coords' is a key into the HDFD5 file. We can have other keys—even nested ones.
One of the interesting things in HDFb is that we can index the dataset while on disk
and access only the elements we’re interested in. Let’s suppose we want to load just
the last two points in our dataset:

In[62]:

f = hb5py.File('../data/plch3/ourpoints.hdf5', 'r'")
dset = f['coords']

last_points = dset[-2:]

The data is not loaded when the file is opened or the dataset is required. Rather, the
data stays on disk until we request the second and last rows in the dataset. At that
point, h5py accesses those two columns and returns a NumPy array-like object
encapsulating that region in that dataset that behaves like a NumPy array and has the
same API.

https://www.hdfgroup.org/solutions/hdf5
http://www.h5py.org/

68

3.13

3.14

CHAPTER 3 It starts with a tensor

Owing to this fact, we can pass the returned object to the torch. from numpy func-
tion to obtain a tensor directly. Note that in this case, the data is copied over to the
tensor’s storage:

In[63]:
last_points = torch.from_numpy (dset[-2:])
f.close()

Once we’re finished loading data, we close the file. Closing the HDFS file invalidates
the datasets, and trying to access dset afterward will give an exception. As long as we
stick to the order shown here, we are fine and can now work with the last_points
tensor.

Conclusion
Now we have covered everything we need to get started with representing everything in
floats. We’ll cover other aspects of tensors—such as creating views of tensors; indexing
tensors with other tensors; and broadcasting, which simplifies performing element-wise
operations between tensors of different sizes or shapes—as needed along the way.

In chapter 4, we will learn how to represent real-world data in PyTorch. We will
start with simple tabular data and move on to something more elaborate. In the pro-
cess, we will get to know more about tensors.

Exercises
Create a tensor a from list (range(9)). Predict and then check the size, offset,
and stride.
Create a new tensor using b = a.view(3, 3). What does view do? Check
that a and b share the same storage.
Create a tensor ¢ = b[l:,1:]. Predict and then check the size, offset, and
stride.
Pick a mathematical operation like cosine or square root. Can you find a corre-
sponding function in the torch library?
Apply the function element-wise to a. Why does it return an error?
What operation is required to make the function work?
Is there a version of your function that operates in place?

3.15 Summary

Neural networks transform floating-point representations into other floating-
point representations. The starting and ending representations are typically
human interpretable, but the intermediate representations are less so.

These floating-point representations are stored in tensors.

Tensors are multidimensional arrays; they are the basic data structure in
PyTorch.

Summary 69

PyTorch has a comprehensive standard library for tensor creation, manipula-
tion, and mathematical operations.

Tensors can be serialized to disk and loaded back.

All tensor operations in PyTorch can execute on the CPU as well as on the GPU,
with no change in the code.

PyTorch uses a trailing underscore to indicate that a function operates in place
on a tensor (for example, Tensor.sqrt_).

Real-world data

representation
using tensors

This chapter covers

Representing real-world data as PyTorch tensors
Working with a range of data types

Loading data from a file

Converting data to tensors

Shaping tensors so they can be used as inputs
for neural network models

In the previous chapter, we learned that tensors are the building blocks for data in
PyTorch. Neural networks take tensors as input and produce tensors as outputs. In
fact, all operations within a neural network and during optimization are operations
between tensors, and all parameters (for example, weights and biases) in a neural
network are tensors. Having a good sense of how to perform operations on tensors
and index them effectively is central to using tools like PyTorch successfully. Now

70

4.1

Working with images 71

that you know the basics of tensors, your dexterity with them will grow as you make
your way through the book.

Here’s a question that we can already address: how do we take a piece of data, a
video, or a line of text, and represent it with a tensor in a way that is appropriate for
training a deep learning model? This is what we’ll learn in this chapter. We’ll cover
different types of data with a focus on the types relevant to this book and show how to
represent that data as tensors. Then we’ll learn how to load the data from the most
common on-disk formats and get a feel for those data types’ structure so we can see
how to prepare them for training a neural network. Often, our raw data won’t be per-
fectly formed for the problem we’d like to solve, so we’ll have a chance to practice our
tensor-manipulation skills with a few more interesting tensor operations.

Each section in this chapter will describe a data type, and each will come with its
own dataset. While we’ve structured the chapter so that each data type builds on the
previous one, feel free to skip around a bit if you’re so inclined.

We’ll be using a lot of image and volumetric data through the rest of the book,
since those are common data types and they reproduce well in book format. We’ll also
cover tabular data, time series, and text, as those will also be of interest to a number of
our readers. Since a picture is worth a thousand words, we’ll start with image data.
We’ll then demonstrate working with a three-dimensional array using medical data
that represents patient anatomy as a volume. Next, we’ll work with tabular data about
wines, just like what we’d find in a spreadsheet. After that, we’ll move to ordered tabular
data, with a time-series dataset from a bike-sharing program. Finally, we’ll dip our toes
into text data from Jane Austen. Text data retains its ordered aspect but introduces
the problem of representing words as arrays of numbers.

In every section, we will stop where a deep learning researcher would start: right
before feeding the data to a model. We encourage you to keep these datasets; they will
constitute excellent material for when we start learning how to train neural network
models in the next chapter.

Working with images

The introduction of convolutional neural networks revolutionized computer vision
(see http://mng.bz/zjMa), and image-based systems have since acquired a whole new
set of capabilities. Problems that required complex pipelines of highly tuned algorith-
mic building blocks are now solvable at unprecedented levels of performance by train-
ing end-to-end networks using paired input-and-desired-output examples. In order to
participate in this revolution, we need to be able to load an image from common
image formats and then transform the data into a tensor representation that has the
various parts of the image arranged in the way PyTorch expects.

An image is represented as a collection of scalars arranged in a regular grid with a
height and a width (in pixels). We might have a single scalar per grid point (the
pixel), which would be represented as a grayscale image; or multiple scalars per grid
point, which would typically represent different colors, as we saw in the previous chap-
ter, or different features like depth from a depth camera.

http://mng.bz/zjMa

72

4.1.1

4.1.2

CHAPTER 4 Real-world data representation using tensors

Scalars representing values at individual pixels are often encoded using 8-bit inte-
gers, as in consumer cameras. In medical, scientific, and industrial applications, it is
not unusual to find higher numerical precision, such as 12-bit or 16-bit. This allows a
wider range or increased sensitivity in cases where the pixel encodes information
about a physical property, like bone density, temperature, or depth.

Adding color channels

We mentioned colors earlier. There are several ways to encode colors into numbers.!
The most common is RGB, where a color is defined by three numbers representing
the intensity of red, green, and blue. We can think of a color channel as a grayscale
intensity map of only the color in question, similar to what you’d see if you looked at
the scene in question using a pair of pure red sunglasses. Figure 4.1 shows a rainbow,
where each of the RGB channels captures a certain portion of the spectrum (the fig-
ure is simplified, in that it elides things like the orange and yellow bands being repre-
sented as a combination of red and green).

RED

Figure 4.1 A rainbow, broken into red, green, and blue channels

The red band of the rainbow is brightest in the red channel of the image, while the
blue channel has both the blue band of the rainbow and the sky as high-intensity.
Note also that the white clouds are high-intensity in all three channels.

Loading an image file

Images come in several different file formats, but luckily there are plenty of ways to
load images in Python. Let’s start by loading a PNG image using the imageio module
(code/plch4/1_image_dog.ipynb).

L' This is something of an understatement: https://en.wikipedia.org/wiki/Color_model.

https://en.wikipedia.org/wiki/Color_model

4.1.3

Working with images 73

Listing 4.1 code/pich4/1_image_dog.ipynb

In(2]:
import imageio

img_arr = imageio.imread('../data/plch4/image-dog/bobby.Jjpg')
img_arr.shape

out[2]:
(720, 1280, 3)

NOTE We’ll use imageio throughout the chapter because it handles different
data types with a uniform API. For many purposes, using TorchVision is a
great default choice to deal with image and video data. We go with imageio
here for somewhat lighter exploration.

At this point, img is a NumPy array-like object with three dimensions: two spatial
dimensions, width and height; and a third dimension corresponding to the red,
green, and blue channels. Any library that outputs a NumPy array will suffice to obtain
a PyTorch tensor. The only thing to watch out for is the layout of the dimensions.
PyTorch modules dealing with image data require tensors to be laid outas Cx Hx W:
channels, height, and width, respectively.

Changing the layout

We can use the tensor’s permute method with the old dimensions for each new dimen-
sion to get to an appropriate layout. Given an input tensor 4 x Wx Cas obtained pre-
viously, we get a proper layout by having channel 2 first and then channels 0 and 1:

In[3]:
img = torch.from_numpy (img_arr)
out = img.permute(2, 0, 1)

We’ve seen this previously, but note that this operation does not make a copy of the
tensor data. Instead, out uses the same underlying storage as img and only plays with
the size and stride information at the tensor level. This is convenient because the
operation is very cheap; but just as a heads-up: changing a pixel in img will lead to a
change in out.

Note also that other deep learning frameworks use different layouts. For instance,
originally TensorFlow kept the channel dimension last, resulting in an H x Wx Clay-
out (it now supports multiple layouts). This strategy has pros and cons from a low-level
performance standpoint, but for our concerns, it doesn’t make a difference as long as
we reshape our tensors properly.

So far, we have described a single image. Following the same strategy we’ve used
for earlier data types, to create a dataset of multiple images to use as an input for our
neural networks, we store the images in a batch along the first dimension to obtain an
Nx Cx Hx Wtensor.

74

4.1.4

CHAPTER 4 Real-world data representation using tensors

Asaslightly more efficient alternative to using stack to build up the tensor, we can pre-
allocate a tensor of appropriate size and fill it with images loaded from a directory, like so:

In[4]:
batch_size = 3
batch = torch.zeros(batch_size, 3, 256, 256, dtype=torch.uint8)

This indicates that our batch will consist of three RGB images 256 pixels in height and
256 pixels in width. Notice the type of the tensor: we're expecting each color to be rep-
resented as an 8-bit integer, as in most photographic formats from standard consumer
cameras. We can now load all PNG images from an input directory and store them in
the tensor:

In[5]:
import os

data_dir = '../data/plch4/image-cats/'
filenames = [name for name in os.listdir (data_dir)
if os.path.splitext (name) [-1] == '.png']
for i, filename in enumerate(filenames) :
img_arr = imageio.imread(os.path.join(data_dir, filename))
img_t = torch.from_numpy (img_arr)
img_t = img_t.permute(2, 0, 1) Here we kee.p only the first three channels.
img t = img t[:3] .Son.1et|.mes images also have an alpha channel
patch[i] = img. t indicating transparency, but our network only

wants RGB input.

Normalizing the data

We mentioned earlier that neural networks usually work with floating-point tensors as
their input. Neural networks exhibit the best training performance when the input
data ranges roughly from O to 1, or from -1 to 1 (this is an effect of how their building
blocks are defined).

So a typical thing we’ll want to do is cast a tensor to floating-point and normalize
the values of the pixels. Casting to floating-point is easy, but normalization is trickier,
as it depends on what range of the input we decide should lie between 0 and 1 (or -1
and 1). One possibility is to just divide the values of the pixels by 255 (the maximum
representable number in 8-bit unsigned):

In[6]:
batch = batch.float()
batch /= 255.0

Another possibility is to compute the mean and standard deviation of the input data
and scale it so that the output has zero mean and unit standard deviation across each
channel:

In[7]:
n_channels = batch.shape[l]
for ¢ in range (n_channels) :
mean = torch.mean (batch[:, c])
std = torch.std(batch[:, c])
batch[:, c] = (batch[:, c] - mean) / std

4.2

3D images: Volumetric data 75

NOTE Here, we normalize just a single batch of images because we do not
know yet how to operate on an entire dataset. In working with images, itis good
practice to compute the mean and standard deviation on all the training data
in advance and then subtract and divide by these fixed, precomputed quanti-
ties. We saw this in the preprocessing for the image classifier in section 2.1.4.

We can perform several other operations on inputs, such as geometric transforma-
tions like rotations, scaling, and cropping. These may help with training or may be
required to make an arbitrary input conform to the input requirements of a network,
like the size of the image. We will stumble on quite a few of these strategies in section
12.6. For now, just remember that you have image-manipulation options available.

3D images: Volumetric data

We’ve learned how to load and represent 2D images, like the ones we take with a camera.
In some contexts, such as medical imaging applications involving, say, CT (computed
tomography) scans, we typically deal with sequences of images stacked along the head-
to-footaxis, each corresponding to aslice across the human body. In CT scans, the inten-
sity represents the density of the different parts of the body—lungs, fat, water, muscle,
and bone, in order of increasing density—mapped from dark to bright when the CT
scan is displayed on a clinical workstation. The density at each point is computed from
the amount of X-rays reaching a detector after crossing through the body, with some
complex math to deconvolve the raw sensor data into the full volume.

CTs have only a single intensity channel, similar to a grayscale image. This means
that often, the channel dimension is left out in native data formats; so, similar to the
last section, the raw data typically has three dimensions. By stacking individual 2D
slices into a 3D tensor, we can build volumetric data representing the 3D anatomy of a
subject. Unlike what we saw in figure 4.1, the extra dimension in figure 4.2 represents
an offset in physical space, rather than a particular band of the visible spectrum.

ToP MIPDLE BOTTOM

Figure 4.2 Slices of a CT scan, from the top of the head to the jawline

76

4.2.1

CHAPTER 4 Real-world data representation using tensors

Part 2 of this book will be devoted to tackling a medical imaging problem in the real
world, so we won’t go into the details of medical-imaging data formats. For now, it suf-
fices to say that there’s no fundamental difference between a tensor storing volumet-
ric data versus image data. We just have an extra dimension, depth, after the channel
dimension, leading to a 5D tensor of shape Nx Cx Dx Hx W.

Loading a specialized format

Let’s load a sample CT scan using the volread function in the imageio module, which
takes a directory as an argument and assembles all Digital Imaging and Communi-
cations in Medicine (DICOM) files? in a series in a NumPy 3D array (code/plch4/
2_volumetric_ct.ipynb).

Listing 4.2 code/pich4/2_volumetric_ct.ipynb

In[2]:
import imageio

dir_path = "../data/plch4/volumetric-dicom/2-LUNG 3.0 B70£-04083"
vol_arr = imageio.volread(dir_path, 'DICOM')
vol_arr.shape

Oout[2]:

Reading DICOM (examining files): 1/99 files (1.0%99/99 files (100.0%)
Found 1 correct series.

Reading DICOM (loading data): 31/99 (31.392/99 (92.999/99 (100.0%)

(99, 512, 512)

As was true in section 4.1.3, the layout is different from what PyTorch expects, due to
having no channel information. So we’ll have to make room for the channel dimen-
sion using unsqueeze:

In([3]:
vol = torch.from_numpy (vol_arr).float()
vol = torch.unsqueeze(vol, 0)

vol.shape

Out[3]:
torch.Size([1, 99, 512, 512])

At this point we could assemble a 5D dataset by stacking multiple volumes along the
batch direction, just as we did in the previous section. We’ll see a lot more CT data in
part 2.

2 From the Cancer Imaging Archive’s CPTAG-LSCC collection: http://mng.bz/K21K.

http://mng.bz/K21K

4.3

4.3.1

Representing tabular data 77

Representing tabular data

The simplest form of data we’ll encounter on a machine learning job is sitting in a
spreadsheet, CSV file, or database. Whatever the medium, it’s a table containing one
row per sample (or record), where columns contain one piece of information about
our sample.

At first we are going to assume there’s no meaning to the order in which samples
appear in the table: such a table is a collection of independent samples, unlike a time
series, for instance, in which samples are related by a time dimension.

Columns may contain numerical values, like temperatures at specific locations; or
labels, like a string expressing an attribute of the sample, like “blue.” Therefore, tabu-
lar data is typically not homogeneous: different columns don’t have the same type. We
might have a column showing the weight of apples and another encoding their color
in a label.

PyTorch tensors, on the other hand, are homogeneous. Information in PyTorch is
typically encoded as a number, typically floating-point (though integer types and
Boolean are supported as well). This numeric encoding is deliberate, since neural
networks are mathematical entities that take real numbers as inputs and produce real
numbers as output through successive application of matrix multiplications and
nonlinear functions.

Using a real-world dataset

Our first job as deep learning practitioners is to encode heterogeneous, real-world
data into a tensor of floating-point numbers, ready for consumption by a neural net-
work. A large number of tabular datasets are freely available on the internet; see, for
instance, https://github.com/caesar0301/awesome-public-datasets. Let’s start with
something fun: wine! The Wine Quality dataset is a freely available table containing
chemical characterizations of samples of vinkho verde, a wine from north Portugal,
together with a sensory quality score. The dataset for white wines can be downloaded
here: http://mng.bz/900l. For convenience, we also created a copy of the dataset on
the Deep Learning with PyTorch Git repository, under data/plch4/tabular-wine.

The file contains a comma-separated collection of values organized in 12 columns
preceded by a header line containing the column names. The first 11 columns con-
tain values of chemical variables, and the last column contains the sensory quality
score from 0 (very bad) to 10 (excellent). These are the column names in the order
they appear in the dataset:

fixed acidity
volatile acidity
citric acid

residual sugar
chlorides

free sulfur dioxide
total sulfur dioxide
density

https://github.com/caesar0301/awesome-public-datasets
http://mng.bz/90Ol

78

4.3.2

CHAPTER 4 Real-world data representation using tensors

PH
sulphates
alcohol
quality

A possible machine learning task on this dataset is predicting the quality score from
chemical characterization alone. Don’t worry, though; machine learning is not going
to kill wine tasting anytime soon. We have to get the training data from somewhere! As
we can see in figure 4.3, we’re hoping to find a relationship between one of the chem-
ical columns in our data and the quality column. Here, we’re expecting to see quality
increase as sulfur decreases.

“.e3

o L

SULFLUR

QLALITY

Figure 4.3 The (we hope) relationship between sulfur and quality in wine

Loading a wine data tensor

Before we can get to that, however, we need to be able to examine the data in a more
usable way than opening the file in a text editor. Let’s see how we can load the data
using Python and then turn it into a PyTorch tensor. Python offers several options for
quickly loading a CSV file. Three popular options are

The csv module that ships with Python
NumPy

Pandas

Representing tabular data 79

The third option is the most time- and memory-efficient. However, we’ll avoid intro-
ducing an additional library in our learning trajectory just because we need to load a
file. Since we already introduced NumPy in the previous section, and PyTorch has
excellent NumPy interoperability, we’ll go with that. Let’s load our file and turn the
resulting NumPy array into a PyTorch tensor (code/plch4/3_tabular_wine.ipynb).

Listing 4.3 code/pich4/3_tabular_wine.ipynb

In[2]:

import csv

wine_path = "../data/plchd4/tabular-wine/winequality-white.csv"

wineqg_numpy = np.loadtxt (wine_path, dtype=np.float32, delimiter=";",
skiprows=1)

wineq_numpy
Out[2]:
array([[7. , 0.27, 0.36, ..., 0.45, 8.8 , 6. 1,
[6.3, 0.3 , 0.34, ..., 0.49, 9.5 , 6. 1,
[8.1, 0.28, 0.4, ..., 0.44, 10.1, 6. 1,
[6.5, 0.24, 0.19, ..., 0.46, 9.4 , 6. 1,
[5.5, 0.29, 0.3 , ..., 0.38, 12.8 , 7. 1
[6. , 0.21, 0.38, ..., 0.32, 11.8 , 6. 11, dtype=float32)

Here we just prescribe what the type of the 2D array should be (32-bit floating-point),
the delimiter used to separate values in each row, and the fact that the first line should
not be read since it contains the column names. Let’s check that all the data has been
read

In[3]:
col_list = next (csv.reader (open(wine_path), delimiter=';"'))

wineqg_numpy.shape, col_list

Out[3]:
((4898, 12),

['fixed acidity',
'volatile acidity',
'citric acid',
'residual sugar',
'chlorides’,

'free sulfur dioxide',
'total sulfur dioxide',
'density"',

'PH',

'sulphates’',

'alcohol",

'quality'])

80 CHAPTER 4 Real-world data representation using tensors

and proceed to convert the NumPy array to a PyTorch tensor:

In[4]:
wineq = torch.from_numpy (wineq numpy)

wineq.shape, wineqg.dtype

Oout[4]:
(torch.Size([4898, 12]), torch.float32)

At this point, we have a floating-point torch.Tensor containing all the columns,
including the last, which refers to the quality score.

Continuous, ordinal, and categorical values

We should be aware of three different kinds of numerical values as we attempt to
make sense of our data.? The first kind is continuous values. These are the most intu-
itive when represented as numbers. They are strictly ordered, and a difference
between various values has a strict meaning. Stating that package A is 2 kilograms
heavier than package B, or that package B came from 100 miles farther away than A
has a fixed meaning, regardless of whether package A is 3 kilograms or 10, or if B
came from 200 miles away or 2,000. If you're counting or measuring something with
units, it’s probably a continuous value. The literature actually divides continuous val-
ues further: in the previous examples, it makes sense to say something is twice as
heavy or three times farther away, so those values are said to be on a ratio scale.
The time of day, on the other hand, does have the notion of difference, but it is not
reasonable to claim that 6:00 is twice as late as 3:00; so time of day only offers an
interval scale.

Next we have ordinal values. The strict ordering we have with continuous values
remains, but the fixed relationship between values no longer applies. A good example
of this is ordering a small, medium, or large drink, with small mapped to the value 1,
medium 2, and large 3. The large drink is bigger than the medium, in the same way
that 3 is bigger than 2, but it doesn’t tell us anything about how much bigger. If we
were to convert our 1, 2, and 3 to the actual volumes (say, 8, 12, and 24 fluid
ounces), then they would switch to being interval values. It's important to remember
that we can’t “do math” on the values outside of ordering them; trying to average
large = 3 and small = 1 does not result in a medium drink!

Finally, categorical values have neither ordering nor numerical meaning to their values.
These are often just enumerations of possibilities assigned arbitrary numbers. Assign-
ing water to 1, coffee to 2, soda to 3, and milk to 4 is a good example. There’s no
real logic to placing water first and milk last; they simply need distinct values to dif-
ferentiate them. We could assign coffee to 10 and milk to -3, and there would be no
significant change (though assigning values in the range 0..N— 1 will have advantages
for one-hot encoding and the embeddings we’ll discuss in section 4.5.4.) Because
the numerical values bear no meaning, they are said to be on a nominal scale.

3 Asastartin g pointforamore in-depth discussion, refer to https://en.wikipedia.org/wiki/Level_of_measurement.

https://en.wikipedia.org/wiki/Level_of_measurement

4.3.3

4.3.4

Representing tabular data 81

Representing scores

We could treat the score as a continuous variable, keep it as a real number, and per-
form a regression task, or treat it as a label and try to guess the label from the chemi-
cal analysis in a classification task. In both approaches, we will typically remove the
score from the tensor of input data and keep it in a separate tensor, so that we can use
the score as the ground truth without it being input to our model:

In[5]:
data = wineg[:, :-1]
data, data.shape

Selects all rows and all
columns except the last

Out[5]:
(tensor([[7.00, 0.27, ..., 0.45, 8.80],
[6.30, 0.30, ey 0.49, 9.5071,
[5.50, 0.29, ..., 0.38, 12.807,
[6.00, 0.21, ey 0.32, 11.80]]), torch.Size([4898, 111))
In[6]:
target = wineqgl[:, -1]

Selects all rows and

target, target.shape the last column

Out[6]:
(tensor([6., 6., e.., 7., 6.1), torch.Size([4898])

If we want to transform the target tensor in a tensor of labels, we have two options,
depending on the strategy or what we use the categorical data for. One is simply to
treat labels as an integer vector of scores:

In[7]:

target = wineqgl[:, -1].long()
target

out[7]:

tensor ([6, 6, ..., 71, 6])

If targets were string labels, like wine color, assigning an integer number to each string
would let us follow the same approach.

One-hot encoding

The other approach is to build a one-hot encoding of the scores: that is, encode each of
the 10 scores in a vector of 10 elements, with all elements set to 0 but one, at a differ-
ent index for each score. This way, a score of 1 could be mapped onto the vector
(1,0,0,0,0,0,0,0,0,0), ascore of 5 onto (0,0,0,0,1,0,0,0,0,0), and so on. Note
that the fact that the score corresponds to the index of the nonzero element is purely
incidental: we could shuffle the assignment, and nothing would change from a classifi-
cation standpoint.

82

CHAPTER 4 Real-world data representation using tensors

There’s a marked difference between the two approaches. Keeping wine quality
scores in an integer vector of scores induces an ordering on the scores—which might
be totally appropriate in this case, since a score of 1 is lower than a score of 4. It also
induces some sort of distance between scores: thatis, the distance between 1 and 3 is the
same as the distance between 2 and 4. If this holds for our quantity, then great. If, on
the other hand, scores are purely discrete, like grape variety, one-hot encoding will be
amuch better fit, as there’s no implied ordering or distance. One-hot encoding is also
appropriate for quantitative scores when fractional values in between integer scores,
like 2.4, make no sense for the application—for when the score is either this or that.

We can achieve one-hot encoding using the scatter_ method, which fills the ten-
sor with values from a source tensor along the indices provided as arguments:

In[8]:
target_onehot = torch.zeros(target.shapel[0], 10)

target_onehot.scatter_ (1, target.unsqueeze(l), 1.0)

out[8]:

tensor ([[0., O., ..., 0., 0.7,
[0., 0., ..., 0., 0.1,
[0., 0., ..., 0., 0.1,
[0., 0., ..., 0., 0.11)

Let’s see what scatter_ does. First, we notice that its name ends with an underscore.
As you learned in the previous chapter, this is a convention in PyTorch that indicates
the method will not return a new tensor, but will instead modify the tensor in place.
The arguments for scatter_ are as follows:

The dimension along which the following two arguments are specified

A column tensor indicating the indices of the elements to scatter

A tensor containing the elements to scatter or a single scalar to scatter (1, in
this case)

In other words, the previous invocation reads, “For each row, take the index of the tar-
get label (which coincides with the score in our case) and use it as the column index
to set the value 1.0.” The end result is a tensor encoding categorical information.

The second argument of scatter_, the index tensor, is required to have the same
number of dimensions as the tensor we scatter into. Since target_onehot has two
dimensions (4,898 x 10), we need to add an extra dummy dimension to target using
unsqueeze:

In[9]:
target_unsqueezed = target.unsqueeze(l)
target_unsqueezed

Out[9]:
tensor ([[6],

4.3.5

Representing tabular data 83

[6]1,
[71,
[611)

The call to unsqueeze adds a singleton dimension, from a 1D tensor of 4,898 elements
to a 2D tensor of size (4,898 x 1), without changing its contents—no extra elements
are added; we just decided to use an extra index to access the elements. That is, we
access the first element of target as target[0] and the first element of its
unsqueezed counterpart as target_unsqueezed[0,0].

PyTorch allows us to use class indices directly as targets while training neural net-
works. However, if we wanted to use the score as a categorical input to the network, we
would have to transform it to a one-hot-encoded tensor.

When to categorize

Now we have seen ways to deal with both continuous and categorical data. You may
wonder what the deal is with the ordinal case discussed in the earlier sidebar. There is
no general recipe for it; most commonly, such data is either treated as categorical (los-
ing the ordering part, and hoping that maybe our model will pick it up during train-
ing if we only have a few categories) or continuous (introducing an arbitrary notion of
distance). We will do the latter for the weather situation in figure 4.5. We summarize
our data mapping in a small flow chart in figure 4.4.

COLUMN
CONTAINS
EXAMPLE REPRESENTATION
l, OF ONE VALUE

USE VALUES DIRECTLY 345

A TREAT AS CONTINVOUS
Yes |

ORDERING
A PRIORITY?

ORDINAL
DATA

NG i
v/ TREAT AS CATEGORICAL

USE ONE-HOT 000010000
OR EMBEDDING

Figure 4.4 How to treat columns with continuous, ordinal, and categorical data

84

4.3.6

CHAPTER 4 Real-world data representation using tensors

Let’s go back to our data tensor, containing the 11 variables associated with the chemical
analysis. We can use the functions in the PyTorch Tensor API to manipulate our data in
tensor form. Let’s first obtain the mean and standard deviations for each column:

In[10]:
data_mean = torch.mean(data, dim=0)
data_mean

Oout[10]:
tensor ([6.85e+00, 2.78e-01, 3.34e-01, 6.39e+00, 4.58e-02, 3.53e+01,
1.38e+02, 9.94e-01, 3.19e+00, 4.90e-01, 1.05e+01])

In[11]:
data_var = torch.var(data, dim=0)
data_var

Out[11]:
tensor ([7.12e-01, 1.02e-02, 1.46e-02, 2.57e+01, 4.77e-04, 2.89e+02,
1.81e+03, 8.95e-06, 2.28e-02, 1.30e-02, 1.51e+00])

In this case, dim=0 indicates that the reduction is performed along dimension 0. At
this point, we can normalize the data by subtracting the mean and dividing by the
standard deviation, which helps with the learning process (we’ll discuss this in more
detail in chapter 5, in section 5.4.4):

In[12]:
data_normalized = (data - data_mean) / torch.sqgrt(data_var)
data_normalized

out[12]:

tensor ([[1.72e-01, -8.18e-02, ..., -3.49e-01, -1.39e+00],
[-6.57e-01, 2.16e-01, ..., 1.35e-03, -8.24e-01],
[-1.61e+00, 1.17e-01, ..., -9.63e-01, 1.86e+00],
[-1.01e+00, -6.77e-01, ..., -1.49e+00, 1.04e+00]])

Finding thresholds

Next, let’s start to look at the data with an eye to seeing if there is an easy way to tell
good and bad wines apart at a glance. First, we’re going to determine which rows in
target correspond to a score less than or equal to 3:

PyTorch also provides comparison functions,
here torch.le(target, 3), but using operators

Inl[13]: seems to be a good standard.

bad_indexes = target <= 3
bad_indexes.shape, bad_indexes.dtype, bad_indexes.sum/()

Out[13]:
(torch.Size([4898]), torch.bool, tensor(20))

Representing tabular data 85

Note that only 20 of the bad_indexes entries are set to True! By using a feature in
PyTorch called advanced indexing, we can use a tensor with data type torch.bool to
index the data tensor. This will essentially filter data to be only items (or rows) corre-
sponding to True in the indexing tensor. The bad_indexes tensor has the same shape
as target, with values of False or True depending on the outcome of the comparison
between our threshold and each element in the original target tensor:

In[147]:
bad_data = data[bad_indexes]
bad_data.shape

out[l4]:
torch.Size([20, 11])

Note that the new bad_data tensor has 20 rows, the same as the number of rows with
True in the bad_indexes tensor. It retains all 11 columns. Now we can start to get
information about wines grouped into good, middling, and bad categories. Let’s take
the .mean () of each column:

In[15]: For Boolean NumPy arrays and
bad_data = datal[target <= 3] PyTorch tensors, the & operator
mid_data = datal (target > 3) & (target < 7)] does a logical “and” operation.

good_data = datal[target >= 7]

bad_mean = torch.mean (bad_data, dim=0)
mid_mean = torch.mean (mid_data, dim=0)
good_mean = torch.mean (good_data, dim=0)

for i, args in enumerate(zip(col_list, bad_mean, mid_mean, good_mean)) :
print ('{:2} {:20} {:6.2f} {:6.2f} {:6.2f}"'.format(i, *args))

Out[1l5]:

0 fixed acidity 7.60 6.89 6.73
1 volatile acidity 0.33 0.28 0.27
2 citric acid 0.34 0.34 0.33
3 residual sugar 6.39 6.71 5.26
4 chlorides 0.05 0.05 0.04
5 free sulfur dioxide 53.33 35.42 34.55
6 total sulfur dioxide 170.60 141.83 125.25
7 density 0.99 0.99 0.99
8 pH 3.19 3.18 3.22
9 sulphates 0.47 0.49 0.50
10 alcohol 10.34 10.26 11.42

It looks like we’re on to something here: at first glance, the bad wines seem to have
higher total sulfur dioxide, among other differences. We could use a threshold on
total sulfur dioxide as a crude criterion for discriminating good wines from bad ones.
Let’s get the indexes where the total sulfur dioxide column is below the midpoint we
calculated earlier, like so:

86

CHAPTER 4 Real-world data representation using tensors

In[l6]:

total_sulfur_threshold = 141.83

total_sulfur_data = datal:,6]

predicted_indexes = torch.lt(total_sulfur_data, total_sulfur_threshold)

predicted_indexes.shape, predicted_indexes.dtype, predicted_indexes.sum()

Out[l6]:
(torch.Size([4898]), torch.bool, tensor(2727))

This means our threshold implies that just over half of all the wines are going to be
high quality. Next, we’ll need to get the indexes of the actually good wines:

In[17]:
actual_indexes = target > 5

actual_indexes.shape, actual_indexes.dtype, actual_indexes.sum/()

Oout[17]:
(torch.Size([4898]), torch.bool, tensor(3258))

Since there are about 500 more actually good wines than our threshold predicted, we
already have hard evidence that it’s not perfect. Now we need to see how well our pre-
dictions line up with the actual rankings. We will perform a logical “and” between our
prediction indexes and the actual good indexes (remember that each is just an array
of zeros and ones) and use that intersection of wines-in-agreement to determine how

well we did:

In[18]:

n_matches = torch.sum(actual_indexes & predicted_indexes) .item()
n_predicted = torch.sum(predicted_indexes) .item()

n_actual = torch.sum(actual_indexes) .item()

n_matches, n_matches / n_predicted, n_matches / n_actual

Oout[18]:
(2018, 0.74000733406674, 0.6193984039287906)

We got around 2,000 wines right! Since we predicted 2,700 wines, this gives us a 74%
chance that if we predict a wine to be high quality, it actually is. Unfortunately, there
are 3,200 good wines, and we only identified 61% of them. Well, we got what we
signed up for; that’s barely better than random! Of course, this is all very naive: we
know for sure that multiple variables contribute to wine quality, and the relationships
between the values of these variables and the outcome (which could be the actual
score, rather than a binarized version of it) is likely more complicated than a simple
threshold on a single value.

Indeed, a simple neural network would overcome all of these limitations, as would
alot of other basic machine learning methods. We’ll have the tools to tackle this prob-
lem after the next two chapters, once we have learned how to build our first neural

4.4

Working with time series 87

network from scratch. We will also revisit how to better grade our results in chapter 12.

Let’s move on to other data types for now.

Working with time series

In the previous section, we covered how to represent data organized in a flat table. As
we noted, every row in the table was independent from the others; their order did not
matter. Or, equivalently, there was no column that encoded information about what
rows came earlier and what came later.

Going back to the wine dataset, we could have had a “year” column that allowed us
to look at how wine quality evolved year after year. Unfortunately, we don’t have such
data at hand, but we’re working hard on manually collecting the data samples, bottle
by bottle. (Stuff for our second edition.) In the meantime, we’ll switch to another
interesting dataset: data from a Washington, D.C., bike-sharing system reporting the
hourly count of rental bikes in 2011-2012 in the Capital Bikeshare system, along with
weather and seasonal information (available here: http://mng.bz/jgOx). Our goal
will be to take a flat, 2D dataset and transform it into a 3D one, as shown in figure 4.5.

DAY | DAY 2 DAY 3
I ! ! T T) T !
- - - 5 [<- - - gt

TlME OF D < MlDt‘f\(‘s\-\T NO[ON MlDNl,G\-l'\‘ > MIDNIGHT - NOON - MIDNIGHT->
WEATHER | |
TEMPERATURE

— 1T —
HOMIDITY
WIND SPEED |

BIKE COUNT r_j
ETC. %

\:\

|
i 1 % |

— T
| <~MIDNIGHT - NOON - MIDNIGHT-> <-MIDNIGHT - NOON - MIDNIGHT->

WEATHER

—] | WEATHER

—f | TEMPERATURE | S —” TEMPERATLR!

— | womoy | HUMDITY |
WIND SPEED

m

L]

|_|{ wwo seeep —
| BECOoLNT DAY | BIKE COUNT
o= DAY 2 eTe.
I i v DAY 3 - Y

Figure 4.5 Transforming a 1D, multichannel dataset into a 2D, multichannel dataset by separating the date and
hour of each sample into separate axes

http://mng.bz/jgOx

88 CHAPTER 4 Real-world data representation using tensors

4.4.1 Adding a time dimension

In the source data, each row is a separate hour of data (figure 4.5 shows a transposed

version of this to better fit on the printed page). We want to change the row-per-hour

organization so that we have one axis that increases at a rate of one day per index incre-

ment, and another axis that represents the hour of the day (independent of the date).

The third axis will be our different columns of data (weather, temperature, and so on).
Let’s load the data (code/plch4/4_time_series_bikes.ipynb).

Listing 4.4 code/pich4/4_time_series_bikes.ipynb

In[2]:

bikes_numpy = np.loadtxt (
"../data/plch4/bike-sharing-dataset/hour-fixed.csv",
dtype=np.float32,
delimiter=",",
skiprows=1,

converters={1: lambda x: float(x[8:10])}) Converts date strings to

bikes = torch.from_numpy (bikes_numpy) numbers corresponding to the

bikes day of the month in column 1

Oout[2]:

tensor ([[1.0000e+00, 1.0000e+00, ..., 1.3000e+01, 1.6000e+011,
[2.0000e+00, 1.0000e+00, ..., 3.2000e+01, 4.0000e+017,
[1.7378e+04, 3.1000e+01, ..., 4.8000e+01, 6.1000e+011,
[1.7379e+04, 3.1000e+01, ..., 3.7000e+01, 4.9000e+0111)

For every hour, the dataset reports the following variables:

= Index of record: instant

= Day of month: day

= Season: season (1: spring, 2: summer, 3: fall, 4: winter)

= Year: yr (0: 2011, 1: 2012)

= Month: mnth (1 to 12)

= Hour: hr (0 to 23)

= Holiday status: holiday

= Day of the week: weekday

= Working day status: workingday

= Weather situation: weathersit (1: clear, 2:mist, 3: light rain/snow, 4: heavy
rain/snow)

= Temperature in °C: temp

= Perceived temperature in °C: atemp

= Humidity: hum

= Wind speed: windspeed

= Number of casual users: casual

= Number of registered users: registered

= Count of rental bikes: cnt

44.2

Working with time series 89

In a time series dataset such as this one, rows represent successive time-points: there is
a dimension along which they are ordered. Sure, we could treat each row as indepen-
dent and try to predict the number of circulating bikes based on, say, a particular time
of day regardless of what happened earlier. However, the existence of an ordering
gives us the opportunity to exploit causal relationships across time. For instance, it
allows us to predict bike rides at one time based on the fact that it was raining at an
earlier time. For the time being, we’re going to focus on learning how to turn our
bike-sharing dataset into something that our neural network will be able to ingest in
fixed-size chunks.

This neural network model will need to see a number of sequences of values for
each different quantity, such as ride count, time of day, temperature, and weather con-
ditions: N parallel sequences of size C. C stands for channel, in neural network par-
lance, and is the same as column for 1D data like we have here. The N dimension
represents the time axis, here one entry per hour.

Shaping the data by time period

We might want to break up the two-year dataset into wider observation periods, like
days. This way we’ll have N (for number of samples) collections of Csequences of length
L. In other words, our time series dataset would be a tensor of dimension 3 and shape
Nx Cx L. The Cwould remain our 17 channels, while L would be 24: 1 per hour of
the day. There’s no particular reason why we must use chunks of 24 hours, though the
general daily rhythm is likely to give us patterns we can exploit for predictions. We
could also use 7 x 24 = 168 hour blocks to chunk by week instead, if we desired. All of
this depends, naturally, on our dataset having the right size—the number of rows must
be a multiple of 24 or 168. Also, for this to make sense, we cannot have gaps in the
time series.

Let’s go back to our bike-sharing dataset. The first column is the index (the global
ordering of the data), the second is the date, and the sixth is the time of day. We have
everything we need to create a dataset of daily sequences of ride counts and other
exogenous variables. Our dataset is already sorted, but if it were not, we could use
torch.sort on it to order it appropriately.

NOTE The version of the file we’re using, hour-fixed.csv, has had some pro-
cessing done to include rows missing from the original dataset. We presume
that the missing hours had zero bike active (they were typically in the early
morning hours).

All we have to do to obtain our daily hours dataset is view the same tensor in batches
of 24 hours. Let’s take a look at the shape and strides of our bikes tensor:

In[3]:
bikes.shape, bikes.stride()

Oout[3]:
(torch.Size([17520, 17]), (17, 1))

90

4.4.3

CHAPTER 4 Real-world data representation using tensors

That’s 17,520 hours, 17 columns. Now let’s reshape the data to have 3 axes—day, hour,
and then our 17 columns:

In[4]:
daily_bikes = bikes.view(-1, 24, bikes.shape[l])
daily_bikes.shape, daily bikes.stride()

Out[4]:
(torch.Size([730, 24, 171), (408, 17, 1))

What happened here? First, bikes.shape[1] is 17, the number of columns in the
bikes tensor. But the real crux of this code is the call to view, which is really import-
ant: it changes the way the tensor looks at the same data as contained in storage.

As you learned in the previous chapter, calling view on a tensor returns a new ten-
sor that changes the number of dimensions and the striding information, without
changing the storage. This means we can rearrange our tensor at basically zero cost,
because no data will be copied. Our call to view requires us to provide the new shape
for the returned tensor. We use -1 as a placeholder for “however many indexes are
left, given the other dimensions and the original number of elements.”

Remember also from the previous chapter that storage is a contiguous, linear con-
tainer for numbers (floating-point, in this case). Our bikes tensor will have each row
stored one after the other in its corresponding storage. This is confirmed by the out-
put from the call to bikes.stride() earlier.

For daily_bikes, the stride is telling us that advancing by 1 along the hour dimen-
sion (the second dimension) requires us to advance by 17 places in the storage (or
one set of columns); whereas advancing along the day dimension (the first dimen-
sion) requires us to advance by a number of elements equal to the length of a row in
the storage times 24 (here, 408, which is 17 x 24).

We see that the rightmost dimension is the number of columns in the original
dataset. Then, in the middle dimension, we have time, split into chunks of 24 sequen-
tial hours. In other words, we now have N sequences of L hours in a day, for C chan-
nels. To get to our desired N x Cx L ordering, we need to transpose the tensor:

In[5]:
daily_bikes = daily_bikes.transpose(l, 2)
daily_bikes.shape, daily_bikes.stride()

Out[5]:
(torch.Size([730, 17, 241), (408, 1, 17))

Now let’s apply some of the techniques we learned earlier to this dataset.

Ready for training

The “weather situation” variable is ordinal. It has four levels: 1 for good weather, and 4
for, er, really bad. We could treat this variable as categorical, with levels interpreted as
labels, or as a continuous variable. If we decided to go with categorical, we would turn

Working with time series 91

the variable into a one-hot-encoded vector and concatenate the columns with the
dataset.*

In order to make it easier to render our data, we’re going to limit ourselves to the
first day for a moment. We initialize a zero-filled matrix with a number of rows equal
to the number of hours in the day and number of columns equal to the number of
weather levels:

In[6]:
first_day = bikes[:24].long()
weather_onehot = torch.zeros(first_day.shape[0], 4)

first_dayl[:,9]

Outl[6]:
tensor(f1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2,
2, 21)

Then we scatter ones into our matrix according to the corresponding level at each
row. Remember the use of unsqueeze to add a singleton dimension as we did in the
previous sections:

In[7]: Decreases the values by 1
weather onehot.scatter_ (because weather situation
dim=1, ranges from 1 to 4, while

index=first_day[:,9] .unsqueeze(l).long() - 1, indices are 0-based

value=1.0)

Ooutl[7]:
tensor ([[1., 0., O.,
(1., 0., 0., 0.1,

o

[0., 1., 0.,
[0., 1., 0., 0.11)

o

Our day started with weather “1” and ended with “2,” so that seems right.
Last, we concatenate our matrix to our original dataset using the cat function.
Let’s look at the first of our results:

In[8]:
torch.cat ((bikes[:24], weather_onehot), 1)[:1]

Out[8]:

tensor([[1.0000, 1.0000, 1.0000, 0.0000, 1.0000, 0.0000, 0.0000,
6.0000, 0.0000, 1.0000, 0.2400, 0.2879, 0.8100, 0.0000,
3.0000, 13.0000, 16.0000, 1.0000, 0.0000, 0.0000, 0.000011)

* This could also be a case where it is useful to go beyond the main path. Speculatively, we could also try to
reflect like categorical, but with order more directly by generalizing one-hot encodings to mapping the ith of our
four categories here to a vector that has ones in the positions 0...zand zeros beyond that. Or—similar to the
embeddings we discussed in section 4.5.4—we could take partial sums of embeddings, in which case it might
make sense to make those positive. As with many things we encounter in practical work, this could be a place
where trying what works for others and then experimenting in a systematic fashion is a good idea.

92

CHAPTER 4 Real-world data representation using tensors

Here we prescribed our original bikes dataset and our one-hot-encoded “weather sit-
uation” matrix to be concatenated along the column dimension (that is, 1). In other
words, the columns of the two datasets are stacked together; or, equivalently, the new
one-hot-encoded columns are appended to the original dataset. For cat to succeed, it
is required that the tensors have the same size along the other dimensions—the row
dimension, in this case. Note that our new last four columns are 1, 0, 0, 0, exactly
as we would expect with a weather value of 1.

We could have done the same with the reshaped daily_bikes tensor. Remember
that it is shaped (B, C, L), where L = 24. We first create the zero tensor, with the same
Band L, but with the number of additional columns as C:

In[9]:

daily_weather_onehot = torch.zeros(daily_ bikes.shapel[0], 4,
daily_bikes.shape[2])

daily_weather_onehot.shape

out[9]:
torch.Size([730, 4, 247)

Then we scatter the one-hot encoding into the tensor in the C dimension. Since this
operation is performed in place, only the content of the tensor will change:

In[10]:
daily_weather_onehot.scatter_ (

1, daily_bikes[:,9,:].1long() .unsqueeze(l) - 1, 1.0)
daily_weather_onehot.shape

Oout[10]:
torch.Size([730, 4, 2417)

And we concatenate along the Cdimension:

In[117:
daily_bikes = torch.cat((daily bikes, daily_weather_onehot), dim=1)

We mentioned earlier that this is not the only way to treat our “weather situation” vari-
able. Indeed, its labels have an ordinal relationship, so we could pretend they are spe-
cial values of a continuous variable. We could just transform the variable so that it runs
from 0.0 to 1.0:

In[12]:
daily_bikes[:, 9, :]1 = (daily_bikes[:, 9, :1 - 1.0) / 3.0

As we mentioned in the previous section, rescaling variables to the [0.0, 1.0] interval
or the [-1.0, 1.0] interval is something we’ll want to do for all quantitative variables,
like temperature (column 10 in our dataset). We’ll see why later; for now, let’s just say
that this is beneficial to the training process.

4.5

Representing text 93

There are multiple possibilities for rescaling variables. We can either map their
range to [0.0, 1.0]

In[13]:

temp = daily bikes[:, 10, :]

temp_min = torch.min (temp)

temp_max = torch.max(temp)

daily bikes[:, 10, :] = ((daily_bikes[:, 10, :] - temp_min)
/ (temp_max - temp_min))

or subtract the mean and divide by the standard deviation:

In[14]:
temp = daily bikes[:, 10, :]
daily_bikes[:, 10, :] = ((daily_bikes[:, 10, :] - torch.mean (temp))

/ torch.std(temp))

In the latter case, our variable will have 0 mean and unitary standard deviation. If our
variable were drawn from a Gaussian distribution, 68% of the samples would sit in the
[-1.0, 1.0] interval.

Great: we've built another nice dataset, and we’ve seen how to deal with time series
data. For this tour d’horizon, it’s important only that we got an idea of how a time
series is laid out and how we can wrangle the data in a form that a network will digest.

Other kinds of data look like a time series, in that there is a strict ordering. Top
two on the list? Text and audio. We’ll take a look at text next, and the “Conclusion”
section has links to additional examples for audio.

Representing text

Deep learning has taken the field of natural language processing (NLP) by storm, par-
ticularly using models that repeatedly consume a combination of new input and previ-
ous model output. These models are called recurrent neural networks (RNNs), and they
have been applied with great success to text categorization, text generation, and auto-
mated translation systems. More recently, a class of networks called transformers with a
more flexible way to incorporate past information has made a big splash. Previous
NLP workloads were characterized by sophisticated multistage pipelines that included
rules encoding the grammar of a language.® Now, state-of-the-art work trains networks
end to end on large corpora starting from scratch, letting those rules emerge from the
data. For the last several years, the most-used automated translation systems available
as services on the internet have been based on deep learning.

Our goal in this section is to turn text into something a neural network can pro-
cess: a tensor of numbers, just like our previous cases. If we can do that and later
choose the right architecture for our text-processing job, we’ll be in the position of
doing NLP with PyTorch. We see right away how powerful this all is: we can achieve

® Nadkarni et al., “Natural language processing: an introduction,” JAMIA, http://mng.bz/8p]JP. See also
https://en.wikipedia.org/wiki/Natural-language_processing.

http://mng.bz/8pJP
https://en.wikipedia.org/wiki/Natural-language_processing

94

4.5.1

4.5.2

CHAPTER 4 Real-world data representation using tensors

state-of-the-art performance on a number of tasks in different domains with the same
PyTorch tools; we just need to cast our problem in the right form. The first part of this
job is reshaping the data.

Converting text to numbers

There are two particularly intuitive levels at which networks operate on text: at the
character level, by processing one character at a time, and at the word level, where
individual words are the finest-grained entities to be seen by the network. The tech-
nique with which we encode text information into tensor form is the same whether we
operate at the character level or the word level. And it’s not magic, either. We stum-
bled upon it earlier: one-hot encoding.

Let’s start with a character-level example. First, let’s get some text to process. An
amazing resource here is Project Gutenberg (www.gutenberg.org), a volunteer effort
to digitize and archive cultural work and make it available for free in open formats,
including plain text files. If we’re aiming at larger-scale corpora, the Wikipedia corpus
stands out: it’s the complete collection of Wikipedia articles, containing 1.9 billion
words and more than 4.4 million articles. Several other corpora can be found at the
English Corpora website (www.english-corpora.org).

Let’s load Jane Austen’s Pride and Prejudice from the Project Gutenberg website:
www.gutenberg.org/files/1342/1342-0.txt. We’ll just save the file and read it in
(code/plch4/5_text_jane_austen.ipynb).

Listing 4.5 code/plch4/5_text_jane_austen.ipynb

In[2]:
with open('../data/plch4/jane-austen/1342-0.txt', encoding='utf8') as f:
text = f.read()

One-hot-encoding characters

There’s one more detail we need to take care of before we proceed: encoding. This is
a pretty vast subject, and we will just touch on it. Every written character is represented
by a code: a sequence of bits of appropriate length so that each character can be
uniquely identified. The simplest such encoding is ASCII (American Standard Code
for Information Interchange), which dates back to the 1960s. ASCII encodes 128 char-
acters using 128 integers. For instance, the letter a corresponds to binary 1100001 or
decimal 97, the letter b to binary 1100010 or decimal 98, and so on. The encoding fits
8 bits, which was a big bonus in 1965.

NOTE 128 characters are clearly not enough to account for all the glyphs,
accents, ligatures, and so on that are needed to properly represent written
text in languages other than English. To this end, a number of encodings
have been developed that use a larger number of bits as code for a wider
range of characters. That wider range of characters was standardized as Uni-
code, which maps all known characters to numbers, with the representation

http://www.gutenberg.org/
https://www.english-corpora.org/
http://www.gutenberg.org/files/1342/1342-0.txt

Representing text 95

in bits of those numbers provided by a specific encoding. Popular encodings
are UTF-8, UTF-16, and UTF-32, in which the numbers are a sequence of 8-,
16-, or 32-bit integers, respectively. Strings in Python 3.x are Unicode strings.

We are going to one-hot encode our characters. It is instrumental to limit the one-hot
encoding to a character set that is useful for the text being analyzed. In our case, since
we loaded text in English, it is safe to use ASCII and deal with a small encoding. We
could also make all of the characters lowercase, to reduce the number of different
characters in our encoding. Similarly, we could screen out punctuation, numbers, or
other characters that aren’t relevant to our expected kinds of text. This may or may
not make a practical difference to a neural network, depending on the task at hand.

At this point, we need to parse through the characters in the text and provide a
one-hot encoding for each of them. Each character will be represented by a vector of
length equal to the number of different characters in the encoding. This vector will
contain all zeros except a one at the index corresponding to the location of the char-
acter in the encoding.

We first split our text into a list of lines and pick an arbitrary line to focus on:

In[3]:

lines = text.split('\n"')
line = lines[200]

line

Oout[3]:

'“Impossible, Mr. Bennet, impossible, when I am not acquainted with him'

Let’s create a tensor that can hold the total number of one-hot-encoded characters for
the whole line:

In[4]: 128 hardcoded due to
letter_t = torch.zeros(len(line), 128) the limits of ASCII
letter_t.shape

out[4]:
torch.Size([70, 128])

Note that letter_t holds a one-hot-encoded character per row. Now we just have to
set a one on each row in the correct position so that each row represents the correct
character. The index where the one has to be set corresponds to the index of the char-
acter in the encoding:

In[5]:

for i, letter in enumerate(line.lower().strip()):
letter_index = ord(letter) if ord(letter) < 128 else 0
letter_t[i] [letter_index] = 1

The text uses directional double
quotes, which are not valid ASCII,
so we screen them out here.

96 CHAPTER 4 Real-world data representation using tensors

4.5.3 One-hot encoding whole words

We have one-hot encoded our sentence into a representation that a neural network
could digest. Word-level encoding can be done the same way by establishing a vocabu-
lary and one-hot encoding sentences—sequences of words—along the rows of our
tensor. Since a vocabulary has many words, this will produce very wide encoded vec-
tors, which may not be practical. We will see in the next section that there is a more
efficient way to represent text at the word level, using embeddings. For now, let’s stick
with one-hot encodings and see what happens.

We’ll define clean_words, which takes text and returns it in lowercase and
stripped of punctuation. When we call it on our “Impossible, Mr. Bennet” 1ine, we get
the following:

In[6]:

def clean_words (input_str) :
punctuation = '.,;:"1?27""_-"
word_list = input_str.lower().replace('\n',"' ').split()
word_list = [word.strip(punctuation) for word in word_list]

return word_list

words_in_line = clean_words (line)
line, words_in_line

Out[6]:
('“Impossible, Mr. Bennet, impossible, when I am not acquainted with him',
["impossible',
'mr',
'bennet ',
'impossible’,
'when',
'i',
'am',
'‘not’',
'acquainted',
'with',
'him'])

Next, let’s build a mapping of words to indexes in our encoding:

In[7]:
word_list = sorted(set(clean_words (text)))
word2index_dict = {word: i for (i, word) in enumerate(word_list)}

len (word2index_dict), word2index_dict['impossible']

Oout[7]:
(7261, 3394)

Note that word2index_dict is now a dictionary with words as keys and an integer as a
value. We will use it to efficiently find the index of a word as we one-hot encode it.
Let’s now focus on our sentence: we break it up into words and one-hot encode it—

Representing text 97

that is, we populate a tensor with one one-hot-encoded vector per word. We create an
empty vector and assign the one-hot-encoded values of the word in the sentence:

In[8]:
word_t = torch.zeros(len(words_in line), len(word2index_dict))
for i, word in enumerate (words_in_line) :

word_index = word2index_dict [word]

word_t[i] [word_index] = 1

print ('{:2} {:4} {}'.format (i, word_index, word))

print (word_t.shape)

Oout[8]:
3394 impossible
4305 mr

813 bennet
3394 impossible
7078 when

3315 i

415 am

4436 not

239 acquainted
7148 with

10 3215 him
torch.Size([11l, 7261])

0 J o Ul W DN O

e}

At this point, tensor represents one sentence of length 11 in an encoding space of size
7,261, the number of words in our dictionary. Figure 4.6 compares the gist of our two
options for splitting text (and using the embeddings we’ll look at in the next section).

The choice between character-level and word-level encoding leaves us to make a
trade-off. In many languages, there are significantly fewer characters than words: rep-
resenting characters has us representing just a few classes, while representing words
requires us to represent a very large number of classes and, in any practical applica-
tion, deal with words that are not in the dictionary. On the other hand, words convey
much more meaning than individual characters, so a representation of words is con-
siderably more informative by itself. Given the stark contrast between these two
options, it is perhaps unsurprising that intermediate ways have been sought, found,
and applied with great success: for example, the byte pair encoding method® starts with a
dictionary of individual letters but then iteratively adds the most frequently observed
pairs to the dictionary until it reaches a prescribed dictionary size. Our example sen-
tence might then be split into tokens like this:”

?Im|pos|s|ible|, |?Mr|.|?B|en|net|, | ?impossible|, | ?when|?I|?am| ?not|
?acquainted|?with|?him

® Most commonly implemented by the subword-nmt and SentencePiece libraries. The conceptual drawback is
that the representation of a sequence of characters is no longer unique.
7 This is from a SentencePiece tokenizer trained on a machine translation dataset.

98

4.5.4

CHAPTER 4 Real-world data representation using tensors

CHARACTER ONE-HGT
INPUT r\‘« 105 SHAPE: 1€ x 128
AS CHARS 10q
p 2 0..0010..0
o W ————>0..0100..0
N % s
S| cuaracter 1B
| Lookuer 105
AS WORDS -, & g
. L 108
- 1ol
IMPOSSIBLE .,
WORD LOGKUP
EMBEDDING MATRIX 7261 X 200 SHAPE: 1% 300
WORD EMBEDDING
3394 ——> 200 120 L4 02 -\14
018 OMT -0M2 -0.4 -2
ROW 2394 -0 -0.89 -0.20 T8 -U3 -L70 -0.84 -0.20 |78 -LI13
045 0.0l 0.04 24 -0.23 -4
26 019 O0B4 0.8 0.4
coLzzam e
0 010....0 CONCEPTUALLY:
WORD ONE-HGT MULTIPLICATION WITH EMBEDDING MATRIX
SHAPE: 1% 726!

VARIOUS POSSIBILITIES FOR REPRESENTING
THE WORD "IMPOSSIBLE”

Figure 4.6 Three ways to encode a word

For most things, our mapping is just splitting by words. But the rarer parts—the capi-
talized Impossible and the name Bennet—are composed of subunits.

Text embeddings

One-hot encoding is a very useful technique for representing categorical data in ten-
sors. However, as we have anticipated, one-hot encoding starts to break down when
the number of items to encode is effectively unbound, as with words in a corpus. In
just one book, we had over 7,000 items!

We certainly could do some work to deduplicate words, condense alternate spell-
ings, collapse past and future tenses into a single token, and that kind of thing. Still, a
general-purpose English-language encoding would be Zuge. Even worse, every time we
encountered a new word, we would have to add a new column to the vector, which
would mean adding a new set of weights to the model to account for that new vocabu-
lary entry—which would be painful from a training perspective.

How can we compress our encoding down to a more manageable size and put a
cap on the size growth? Well, instead of vectors of many zeros and a single one, we can

Representing text 99

use vectors of floating-point numbers. A vector of, say, 100 floating-point numbers can
indeed represent a large number of words. The trick is to find an effective way to map
individual words into this 100-dimensional space in a way that facilitates downstream
learning. This is called an embedding.

In principle, we could simply iterate over our vocabulary and generate a set of 100
random floating-point numbers for each word. This would work, in that we could
cram a very large vocabulary into just 100 numbers, but it would forgo any concept of
distance between words based on meaning or context. A model using this word
embedding would have to deal with very little structure in its input vectors. An ideal
solution would be to generate the embedding in such a way that words used in similar
contexts mapped to nearby regions of the embedding.

Well, if we were to design a solution to this problem by hand, we might decide to
build our embedding space by choosing to map basic nouns and adjectives along the
axes. We can generate a 2D space where axes map to nouns—fruit (0.0-0.33), flower
(0.33-0.66), and dog (0.66-1.0)—and adjectives—red (0.0-0.2), orange (0.2-0.4), yellow
(0.4-0.6), white (0.6-0.8), and brown (0.8-1.0). Our goal is to take actual fruit, flowers,
and dogs and lay them out in the embedding.

As we start embedding words, we can map apple to a number in the fruit and red
quadrant. Likewise, we can easily map tangerine, lemon, lychee, and kiwi (to round out
our list of colorful fruits). Then we can start on flowers, and assign rose, poppy, daffodil,
lily, and ... Hmm. Not many brown flowers out there. Well, sunflower can get flower, yel-
low, and brown, and then daisy can get flower, white, and yellow. Perhaps we should
update kiwi to map close to fruit, brown, and gveen.s For dogs and color, we can embed
redbone near red; uh, fox perhaps for orange; golden retriever for yellow, poodlefor white, and
... most kinds of dogs are brown.

Now our embeddings look like figure 4.7. While doing this manually isn’t really
feasible for a large corpus, note that although we had an embedding size of 2, we
described 15 different words besides the base 8§ and could probably cram in quite a few
more if we took the time to be creative about it.

As you’ve probably already guessed, this kind of work can be automated. By pro-
cessing a large corpus of organic text, embeddings similar to the one we just discussed
can be generated. The main differences are that there are 100 to 1,000 elements in
the embedding vector and that axes do not map directly to concepts: rather, concep-
tually similar words map in neighboring regions of an embedding space whose axes
are arbitrary floating-point dimensions.

While the exact algorithms® used are a bit out of scope for what we’re wanting to
focus on here, we’d just like to mention that embeddings are often generated using
neural networks, trying to predict a word from nearby words (the context) in a sen-
tence. In this case, we could start from one-hot-encoded words and use a (usually

8 Actually, with our 1D view of color, this is not possible, as sunflower’s yellow and brown will average to white—
but you get the idea, and it does work better in higher dimensions.
9 One example is word2vec: https://code.google.com/archive/p/word2vec.

https://code.google.com/archive/p/word2vec

100

4.5.5

CHAPTER 4 Real-world data representation using tensors

\<IWL
ROWN x
X
0.8
WhiteCHEE Ly PooDLE
X x x
0.6
YELLOW LEMON PAFPOPIL eoLpen ReTRIEVER
X X
o4 Fok
o
ORANGE
RA;‘ TANGERINE poeePyY X
0.2 x ”
RED APPLE REDRONE
X X RoOSE X
0.0 FRUIT FlLoWer DOG
‘ X X X
| | | T I
0.0 0.2 o.4 0.6 0.8

Figure 4.7 Our manual word embeddings

rather shallow) neural network to generate the embedding. Once the embedding was
available, we could use it for downstream tasks.

One interesting aspect of the resulting embeddings is that similar words end up not
only clustered together, but also having consistent spatial relationships with other
words. For example, if we were to take the embedding vector for apple and begin to add
and subtract the vectors for other words, we could begin to perform analogies like apple
- red - sweet + yellow + sour and end up with a vector very similar to the one for lemon.

More contemporary embedding models—with BERT and GPT-2 making headlines
even in mainstream media—are much more elaborate and are context sensitive: that
is, the mapping of a word in the vocabulary to a vector is not fixed but depends on the
surrounding sentence. Yet they are often used just like the simpler classic embeddings
we’ve touched on here.

Text embeddings as a blueprint

Embeddings are an essential tool for when a large number of entries in the vocabulary
have to be represented by numeric vectors. But we won’t be using text and text
embeddings in this book, so you might wonder why we introduce them here. We
believe that how text is represented and processed can also be seen as an example for
dealing with categorical data in general. Embeddings are useful wherever one-hot
encoding becomes cumbersome. Indeed, in the form described previously, they are
an efficient way of representing one-hot encoding immediately followed by multiplica-
tion with the matrix containing the embedding vectors as rows.

4.6

4.7

Exercises 101

In non-text applications, we usually do not have the ability to construct the embed-
dings beforehand, but we will start with the random numbers we eschewed earlier and
consider improving them part of our learning problem. This is a standard tech-
nique—so much so that embeddings are a prominent alternative to one-hot encod-
ings for any categorical data. On the flip side, even when we deal with text, improving
the prelearned embeddings while solving the problem at hand has become a common
practice.'”

When we are interested in co-occurrences of observations, the word embeddings
we saw earlier can serve as a blueprint, too. For example, recommender systems—cus-
tomers who liked our book also bought ...—use the items the customer already inter-
acted with as the context for predicting what else will spark interest. Similarly,
processing text is perhaps the most common, well-explored task dealing with
sequences; so, for example, when working on tasks with time series, we might look for
inspiration in what is done in natural language processing.

Conclusion

We’ve covered a lot of ground in this chapter. We learned to load the most common
types of data and shape them for consumption by a neural network. Of course, there are
more data formats in the wild than we could hope to describe in a single volume. Some,
like medical histories, are too complex to cover here. Others, like audio and video, were
deemed less crucial for the path of this book. If you’re interested, however, we provide
short examples of audio and video tensor creation in bonus Jupyter Notebooks provided
on the book’s website (www.manning.com/books/deep-learning-with-pytorch) and in
our code repository (https://github.com/deep-learning-with-pytorch/dlwpt-code/
tree/master/plch4).

Now that we’re familiar with tensors and how to store data in them, we can move on
to the next step towards the goal of the book: teaching you to train deep neural net-
works! The next chapter covers the mechanics of learning for simple linear models.

Exercises

Take several pictures of red, blue, and green items with your phone or other dig-

ital camera (or download some from the internet, if a camera isn’t available).
Load each image, and convert it to a tensor.
For each image tensor, use the .mean () method to get a sense of how bright
the image is.
Take the mean of each channel of your images. Can you identify the red,
green, and blue items from only the channel averages?

1% This goes by the name fine-tuning.

https://www.manning.com/books/deep-learning-with-pytorch
https://github.com/deep-learning-with-pytorch/dlwpt-code/tree/master/p1ch4
https://github.com/deep-learning-with-pytorch/dlwpt-code/tree/master/p1ch4
https://github.com/deep-learning-with-pytorch/dlwpt-code/tree/master/p1ch4

102 CHAPTER 4 Real-world data representation using tensors

Select a relatively large file containing Python source code.
Build an index of all the words in the source file (feel free to make your toke-
nization as simple or as complex as you like; we suggest starting with replac-
ing r" ["a-zA-z0-9_]+" with spaces).
Compare your index with the one we made for Pride and Prejudice. Which is
larger?
Create the one-hot encoding for the source code file.
What information is lost with this encoding? How does that information
compare to what’s lost in the Pride and Prejudice encoding?

4.8 Summary

Neural networks require data to be represented as multidimensional numerical
tensors, often 32-bit floating-point.

In general, PyTorch expects data to be laid out along specific dimensions
according to the model architecture—for example, convolutional versus recur-
rent. We can reshape data effectively with the PyTorch tensor API.

Thanks to how the PyTorch libraries interact with the Python standard library
and surrounding ecosystem, loading the most common types of data and con-
verting them to PyTorch tensors is convenient.

Images can have one or many channels. The most common are the red-green-
blue channels of typical digital photos.

Many images have a per-channel bit depth of 8, though 12 and 16 bits per chan-
nel are not uncommon. These bit depths can all be stored in a 32-bit floating-
point number without loss of precision.

Single-channel data formats sometimes omit an explicit channel dimension.
Volumetric data is similar to 2D image data, with the exception of adding a
third dimension (depth).

Converting spreadsheets to tensors can be very straightforward. Categorical-
and ordinal-valued columns should be handled differently from interval-valued
columns.

Text or categorical data can be encoded to a one-hot representation through the
use of dictionaries. Very often, embeddings give good, efficient representations.

The mechanucs
of learning

This chapter covers

Understanding how algorithms can learn from data

Reframing learning as parameter estimation, using
differentiation and gradient descent

Walking through a simple learning algorithm
How PyTorch supports learning with autograd

With the blooming of machine learning that has occurred over the last decade, the
notion of machines that learn from experience has become a mainstream theme in
both technical and journalistic circles. Now, how is it exactly that a machine learns?
What are the mechanics of this process—or, in words, what is the algorithm behind
it? From the point of view of an observer, a learning algorithm is presented with
input data that is paired with desired outputs. Once learning has occurred, that
algorithm will be capable of producing correct outputs when it is fed new data that
is similar enough to the input data it was trained on. With deep learning, this process
works even when the input data and the desired output are far from each other:
when they come from different domains, like an image and a sentence describing
it, as we saw in chapter 2.

103

104

5.1

CHAPTER 5 The mechanics of learning

A timeless lesson in modeling

Building models that allow us to explain input/output relationships dates back centu-
ries at least. When Johannes Kepler, a German mathematical astronomer (1571-1630),
figured out his three laws of planetary motion in the early 1600s, he based them on
data collected by his mentor Tycho Brahe during naked-eye observations (yep, seen
with the naked eye and written on a piece of paper). Not having Newton’s law of grav-
itation at his disposal (actually, Newton used Kepler’s work to figure things out),
Kepler extrapolated the simplest possible geometric model that could fit the data.
And, by the way, it took him six years of staring at data that didn’t make sense to him,
together with incremental realizations, to finally formulate these laws.! We can see this
process in figure 5.1.

g} KEPLER'S
o B

(FIRST + SECOND) LAWS

CANDIDATE
MoDELS

M |
JOHANNES é&] é> \>

FOCUS OF
ELLIPSE

/
IN />
~
- T YR EQUAL AREAS
. - g Ny OVER TIME
. \ Q‘
.: 00 . l *
{4 ' .,
= £ (ECCENTRICITY
Y.L L%, OBSERVATIONS IS A LOT LARGER
W7 L FOR MULTIPLE THAN THE EARTH'S)
T PLANETS

Figure 5.1 Johannes Kepler considers multiple candidate models that might fit the data at hand, settling
on an ellipse.

Kepler’s first law reads: “The orbit of every planet is an ellipse with the Sun at one of
the two foci.” He didn’t know what caused orbits to be ellipses, but given a set of obser-
vations for a planet (or a moon of a large planet, like Jupiter), he could estimate the
shape (the eccentricity) and size (the semi-latus rectum) of the ellipse. With those two
parameters computed from the data, he could tell where the planet might be during

! As recounted by physicist Michael Fowler: http://mng.bz/K2E,j.

http://mng.bz/K2Ej

A timeless lesson in modeling 105

its journey in the sky. Once he figured out the second law—*A line joining a planet
and the Sun sweeps out equal areas during equal intervals of time”—he could also tell
when a planet would be at a particular point in space, given observations in time.?

So, how did Kepler estimate the eccentricity and size of the ellipse without comput-
ers, pocket calculators, or even calculus, none of which had been invented yet? We
can learn how from Kepler’s own recollection, in his book New Astronomy, or from how

J. V. Field put it in his series of articles, “The origins of proof,” (http://mng.bz/9007):

Essentially, Kepler had to try different shapes, using a certain number of observations to find
the curve, then use the curve to find some more positions, for times when he had observations
available, and then check whether these calculated positions agreed with the observed ones.

—]J. V. Field
So let’s sum things up. Over six years, Kepler

Got lots of good data from his friend Brahe (not without some struggle)

Tried to visualize the heck out of it, because he felt there was something fishy
going on

Chose the simplest possible model that had a chance to fit the data (an ellipse)
Split the data so that he could work on part of it and keep an independent set
for validation

Started with a tentative eccentricity and size for the ellipse and iterated until the
model fit the observations

Validated his model on the independent observations

Looked back in disbelief

There’s a data science handbook for you, all the way from 1609. The history of science
is literally constructed on these seven steps. And we have learned over the centuries
that deviating from them is a recipe for disaster.’

This is exactly what we will set out to do in order to learn something from data. In
fact, in this book there is virtually no difference between saying that we’ll fit the data
or that we’ll make an algorithm learn from data. The process always involves a func-
tion with a number of unknown parameters whose values are estimated from data: in
short, a model.

We can argue that learning from data presumes the underlying model is not engi-
neered to solve a specific problem (as was the ellipse in Kepler’s work) and is instead
capable of approximating a much wider family of functions. A neural network would
have predicted Tycho Brahe’s trajectories really well without requiring Kepler’s flash
of insight to try fitting the data to an ellipse. However, Sir Isaac Newton would have
had a much harder time deriving his laws of gravitation from a generic model.

? Understanding the details of Kepler’s laws is not needed to understand this chapter, but you can find more
information at https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion.
> Unless you're a theoretical physicist ;).

https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
http://mng.bz/9007

106

5.2

CHAPTER 5 The mechanics of learning

In this book, we’re interested in models that are not engineered for solving a spe-
cific narrow task, but that can be automatically adapted to specialize themselves for
any one of many similar tasks using input and output pairs—in other words, general
models trained on data relevant to the specific task at hand. In particular, PyTorch is
designed to make it easy to create models for which the derivatives of the fitting error,
with respect to the parameters, can be expressed analytically. No worries if this last
sentence didn’t make any sense at all; coming next, we have a full section that hope-
fully clears it up for you.

This chapter is about how to automate generic function-fitting. After all, this is
what we do with deep learning—deep neural networks being the generic functions
we’re talking about—and PyTorch makes this process as simple and transparent as
possible. In order to make sure we get the key concepts right, we’ll start with a model
that is a lot simpler than a deep neural network. This will allow us to understand the
mechanics of learning algorithms from first principles in this chapter, so we can move
to more complicated models in chapter 6.

Learning is just parameter estimation

In this section, we’ll learn how we can take data, choose a model, and estimate the
parameters of the model so that it will give good predictions on new data. To do so,
we’ll leave the intricacies of planetary motion and divert our attention to the second-
hardest problem in physics: calibrating instruments.

Figure 5.2 shows the high-level overview of what we’ll implement by the end of the
chapter. Given input data and the corresponding desired outputs (ground truth), as
well as initial values for the weights, the model is fed input data (forward pass), and a
measure of the error is evaluated by comparing the resulting outputs to the ground
truth. In order to optimize the parameter of the model—its weights—the change in
the error following a unit change in weights (that is, the gradient of the error with
respect to the parameters) is computed using the chain rule for the derivative of a
composite function (backward pass). The value of the weights is then updated in the
direction that leads to a decrease in the error. The procedure is repeated until the
error, evaluated on unseen data, falls below an acceptable level. If what we just said
sounds obscure, we’ve got a whole chapter to clear things up. By the time we’re done,
all the pieces will fall into place, and this paragraph will make perfect sense.

We’re now going to take a problem with a noisy dataset, build a model, and imple-
ment a learning algorithm for it. When we start, we’ll be doing everything by hand,
but by the end of the chapter we’ll be letting PyTorch do all the heavy lifting for us.
When we finish the chapter, we will have covered many of the essential concepts that
underlie training deep neural networks, even if our motivating example is very simple
and our model isn’t actually a neural network (yet!).

Learning is just parameter estimation

THE LEARNING PROCESS

El | DESIRED OUTPUTS

"
S [(BGROUND TRUTH)
1 "0

L,

FOR\NARD

d
72U
£ 1 1‘ oL

CHANGE WEIGHTS To
DECREASE ERRORS &— ERRORS (LOSS FUNCTION)
TERATE

BACKWARD

%% 5 B0 vauoation

Figure 5.2 Our mental model of the learning process

5.2.1 A hot problem

107

We just got back from a trip to some obscure location, and we brought back a fancy,
wall-mounted analog thermometer. It looks great, and it’s a perfect fit for our living
room. Its only flaw is that it doesn’t show units. Not to worry, we’ve got a plan: we’ll
build a dataset of readings and corresponding temperature values in our favorite
units, choose a model, adjust its weights iteratively until a measure of the error is low

enough, and finally be able to interpret the new readings in units we understand.*

Let’s try following the same process Kepler used. Along the way, we’ll use a tool he

never had available: PyTorch!

5.2.2 Gathering some data

We’ll start by making a note of temperature data in good old Celsius® and measure-
ments from our new thermometer, and figure things out. After a couple of weeks,

here’s the data (code/plchb5/1_parameter_estimation.ipynb):

* This task—fitting model outputs to continuous values in terms of the types discussed in chapter 4—is called

a regression problem. In chapter 7 and part 2, we will be concerned with classification problems.
® The author of this chapter is Italian, so please forgive him for using sensible units.

108

5.23

5.24

CHAPTER 5 The mechanics of learning

In[2]:

c = [0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]
u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
c = torch.tensor (t_c)

u torch. tensor (t_u)

Here, the t_c values are temperatures in Celsius, and the t_u values are our unknown
units. We can expect noise in both measurements, coming from the devices them-
selves and from our approximate readings. For convenience, we’ve already put the
data into tensors; we’ll use it in a minute.

Visualizing the data

A quick plot of our data in figure 5.3 tells us that it’s noisy, but we think there’s a pat-
tern here.

TEMPERATURE (°CELSIUY)
ol 3] [5 R
o9
°
[]

[y,
1
[J

T T T T T T T Figure 5.3 Our unknown
20 30 4o el eo o 80 data just might follow a

MEASUREMENT linear model.

NOTE Spoiler alert: we know a linear model is correct because the problem
and data have been fabricated, but please bear with us. It’s a useful motivating
example to build our understanding of what PyTorch is doing under the
hood.

Choosing a linear model as a first try

In the absence of further knowledge, we assume the simplest possible model for con-
verting between the two sets of measurements, just like Kepler might have done. The
two may be linearly related—that is, multiplying t_u by a factor and adding a constant,
we may get the temperature in Celsius (up to an error that we omit):

t,c=w?* t u+b

5.3

Less loss is what we want 109

Is this a reasonable assumption? Probably; we’ll see how well the final model per-
forms. We chose to name w and b after weight and bias, two very common terms for lin-
ear scaling and the additive constant—we’ll bump into those all the time.%

OK, now we need to estimate wand b, the parameters in our model, based on the data
we have. We must do it so that temperatures we obtain from running the unknown tem-
peratures t_u through the model are close to temperatures we actually measured in Cel-
sius. If that sounds like fitting a line through a set of measurements, well, yes, because
that’s exactlywhatwe’re doing. We’ll go through this simple example using PyTorch and
realize that training a neural network will essentially involve changing the model for a
slightly more elaborate one, with a few (or a metric ton) more parameters.

Let’s flesh it out again: we have a model with some unknown parameters, and we
need to estimate those parameters so that the error between predicted outputs and
measured values is as low as possible. We notice that we still need to exactly define a
measure of the error. Such a measure, which we refer to as the loss function, should be
high if the error is high and should ideally be as low as possible for a perfect match.
Our optimization process should therefore aim at finding w and b so that the loss
function is at a minimum.

Less loss is what we want

A loss function (or cost function) is a function that computes a single numerical value
that the learning process will attempt to minimize. The calculation of loss typically
involves taking the difference between the desired outputs for some training samples
and the outputs actually produced by the model when fed those samples. In our case,
that would be the difference between the predicted temperatures t_p output by our
model and the actual measurements: t_p - t_c.

We need to make sure the loss function makes the loss positive both when t_p is
greater than and when it is less than the true t_c, since the goal is for t_p to match t_c.
We have a few choices, the most straightforward being |t_p - t_c| and (t_p - t_c)"2.
Based on the mathematical expression we choose, we can emphasize or discount certain
errors. Conceptually, a loss function is a way of prioritizing which errors to fix from our
training samples, so that our parameter updates result in adjustments to the outputs for
the highly weighted samples instead of changes to some other samples’ output that had
a smaller loss.

Both of the example loss functions have a clear minimum at zero and grow mono-
tonically as the predicted value moves further from the true value in either direction.
Because the steepness of the growth also monotonically increases away from the mini-
mum, both of them are said to be convex. Since our model is linear, the loss as a function
of wand bis also convex.” Cases where the loss is a convex function of the model param-
eters are usually great to deal with because we can find a minimum very efficiently

% The weight tells us how much a given input influences the output. The bias is what the output would be if all
inputs were zero.
7 Contrast that with the function shown in figure 5.6, which is not convex.

110

531

CHAPTER 5 The mechanics of learning

through specialized algorithms. However, we will instead use less powerful but more
generally applicable methods in this chapter. We do so because for the deep neural net-
works we are ultimately interested in, the loss is not a convex function of the inputs.

For our two loss functions [t_p - t_c| and (t_p - t_c)"2, as shown in figure 5.4,
we notice that the square of the differences behaves more nicely around the mini-
mum: the derivative of the error-squared loss with respect to t_p is zero when t_p
equals t_c. The absolute value, on the other hand, has an undefined derivative right
where we’d like to converge. This is less of an issue in practice than it looks like, but
we’ll stick to the square of differences for the time being.

bal !
)

X X

Figure 5.4 Absolute difference versus difference squared

It’s worth noting that the square difference also penalizes wildly wrong results more than
the absolute difference does. Often, having more slightly wrong results is better than hav-
ing a few wildly wrong ones, and the squared difference helps prioritize those as desired.

From problem back to PyTorch

We’ve figured out the model and the loss function—we’ve already got a good part of
the high-level picture in figure 5.2 figured out. Now we need to set the learning pro-
cess in motion and feed it actual data. Also, enough with math notation; let’s switch to
PyTorch—after all, we came here for the fun.

We’ve already created our data tensors, so now let’s write out the model as a
Python function:

In[3]:
def model (t_u, w, b):
return w * t_u + b

We’re expecting t_u, w, and b to be the input tensor, weight parameter, and bias
parameter, respectively. In our model, the parameters will be PyTorch scalars (aka

Less loss is what we want 111

zero-dimensional tensors), and the product operation will use broadcasting to yield
the returned tensors. Anyway, time to define our loss:

In[4]:

def loss_fn(t_p, t_c):
squared_diffs = (t_p - t_c)**2
return squared_diffs.mean()

Note that we are building a tensor of differences, taking their square element-wise,
and finally producing a scalar loss function by averaging all of the elements in the
resulting tensor. It is a mean square loss.

We can now initialize the parameters, invoke the model,

In[5]:
w = torch.ones(())
b = torch.zeros(())

t_p = model(t_u, w, b)
t_p

Out[5]:
tensor ([35.7000, 55.9000, 58.2000, 81.9000, 56.3000, 48.9000, 33.9000,
21.8000, 48.4000, 60.4000, 68.40001)

and check the value of the loss:

In[6]:
loss = loss_fn(t_p, t_c)
loss

Oout[6]:
tensor (1763.8846)

We implemented the model and the loss in this section. We’ve finally reached the
meat of the example: how do we estimate w and b such that the loss reaches a mini-
mum? We’ll first work things out by hand and then learn how to use PyTorch’s super-
powers to solve the same problem in a more general, off-the-shelf way.

Broadcasting

We mentioned broadcasting in chapter 3, and we promised to look at it more carefully
when we need it. In our example, we have two scalars (zero-dimensional tensors) w
and b, and we multiply them with and add them to vectors (one-dimensional tensors)
of length b.

Usually—and in early versions of PyTorch, too—we can only use element-wise binary
operations such as addition, subtraction, multiplication, and division for arguments
of the same shape. The entries in matching positions in each of the tensors will be
used to calculate the corresponding entry in the result tensor.

112

(continued)

CHAPTER 5 The mechanics of learning

Broadcasting, which is popular in NumPy and adapted by PyTorch, relaxes this assump-
tion for most binary operations. It uses the following rules to match tensor elements:

For each index dimension, counted from the back, if one of the operands is

size 1 in that

dimension, PyTorch will use the single entry along this dimen-

sion with each of the entries in the other tensor along this dimension.
If both sizes are greater than 1, they must be the same, and natural matching

is used.

If one of the tensors has more index dimensions than the other, the entirety
of the other tensor will be used for each entry along these dimensions.

This sounds complica

ted (and it can be error-prone if we don’t pay close attention, which

is why we have named the tensor dimensions as shown in section 3.4), but usually,
we can either write down the tensor dimensions to see what happens or picture what
happens by using space dimensions to show the broadcasting, as in the following figure.

Of course, this would all be theory if we didn’t have some code examples:

In[7]:

x = torch.ones (())
vy = torch.ones (3,1
z = torch.ones (1,3
a = torch.ones (2

print (f"shapes: x:

)

)

1, 1)

{x.shape}, y: {y.shape}")

Co,2= Co, 4=
ao+bg

Co,3=
aop+bs

o)
o)
o a)
W

-
Co,0= | Co,1=
_ — _ _
le

I
I

Q
N

|

3

]

C1,0= 1,1= | C1,2= (C1,3= | C1,4=

e)
o)

ai+bolai+bi|ar+bylar+bs|ar+bs
S SR,) _ _
be
= C,0= [C21= | €C2,2= (€23 | C2,4=
- azx+bglaz+bi|az+bylaz+bs|az+ by
N U U W, G
be
C3,0= [C3,1= | C3,2= [C3,3= [C3,4=
€3+bo as+bilaz+by|as+bslaz+by
~

Ca,0= [C41= | Ca2=
as+bolas+bilas+b;

—

Ca,3= [C4,84=
as+bs|las+bsg

T
(C
E

print (" z: {z.shape}, a: {a.shapel}")
print("x * y:", (x * y).shape)
print("y * z:", (y * z).shape)
print("y * z * a:", (y * z * a).shape)
Oout[7]:
shapes: x: torch.Size([]), y: torch.Size([3, 11)
z: torch.Size([1l, 3]1), a: torch.Size([2, 1, 11)
X * y: torch.Size([3, 1])
y * z: torch.Size([3, 3])

y * z * a: torch.Size([2, 3, 3])

5.4

54.1

Down along the gradient 113

Down along the gradient

We’ll optimize the loss function with respect to the parameters using the gradient
descent algorithm. In this section, we’ll build our intuition for how gradient descent
works from first principles, which will help us a lot in the future. As we mentioned,
there are ways to solve our example problem more efficiently, but those approaches
aren’t applicable to most deep learning tasks. Gradient descent is actually a very sim-
ple idea, and it scales up surprisingly well to large neural network models with mil-
lions of parameters.

Let’s start with a mental image, which we
conveniently sketched out in figure 5.5. Sup-
pose we are in front of a machine sporting two
knobs, labeled w and b. We are allowed to see
the value of the loss on a screen, and we are
told to minimize that value. Not knowing the
effect of the knobs on the loss, we start fid-
dling with them and decide for each knob
which direction makes the loss decrease. We
decide to rotate both knobs in their direction

of decreasing loss. Suppose we’re far from the

optimal value: we’d likely see the loss decrease
quickly and then slow down as it gets closer to

the minimum. We notice that at some point, Figure 5.5 A cartoon depiction of the
optimization process, where a person
with knobs for w and b searches for the
direction to turn the knobs that makes
We also learn that when the loss changes the loss decrease

the loss climbs back up again, so we invert the
direction of rotation for one or both knobs.

slowly, it’s a good idea to adjust the knobs
more finely, to avoid reaching the point where the loss goes back up. After a while,
eventually, we converge to a minimum.

Decreasing loss

Gradient descent is not that different from the scenario we just described. The idea is
to compute the rate of change of the loss with respect to each parameter, and modify
each parameter in the direction of decreasing loss. Just like when we were fiddling
with the knobs, we can estimate the rate of change by adding a small number to w and
b and seeing how much the loss changes in that neighborhood:

In[8]:
delta = 0.1

loss_rate_of_change_w = \
(loss_fn(model (t_u, w + delta, b), t_c) -
loss_fn(model(t_u, w - delta, b), t_c)) / (2.0 * delta)

114

54.2

CHAPTER 5 The mechanics of learning

This is saying that in the neighborhood of the current values of w and b, a unit
increase in w leads to some change in the loss. If the change is negative, then we need
to increase w to minimize the loss, whereas if the change is positive, we need to
decrease w. By how much? Applying a change to w that is proportional to the rate of
change of the loss is a good idea, especially when the loss has several parameters: we
apply a change to those that exert a significant change on the loss. It is also wise to
change the parameters slowly in general, because the rate of change could be dramat-
ically different at a distance from the neighborhood of the current w value. Therefore,
we typically should scale the rate of change by a small factor. This scaling factor has
many names; the one we use in machine learning is learning_rate:

In[9]:
learning_rate = le-2

w = w - learning_rate * loss_rate_of_change_w
We can do the same with b:

In[10]:

loss_rate_of_change_b = \
(loss_fn(model (t_u, w, b + delta), t_c) -
loss_fn(model (t_u, w, b - delta), t_c)) / (2.0 * delta)

b = b - learning_rate * loss_rate_of_change_b

This represents the basic parameter-update step for gradient descent. By reiterating
these evaluations (and provided we choose a small enough learning rate), we will
converge to an optimal value of the parameters for which the loss computed on the
given data is minimal. We’ll show the complete iterative process soon, but the way we
just computed our rates of change is rather crude and needs an upgrade before we
move on. Let’s see why and how.

Getting analytical

Computing the rate of change by using repeated evaluations of the model and loss in
order to probe the behavior of the loss function in the neighborhood of w and b
doesn’t scale well to models with many parameters. Also, it is not always clear how
large the neighborhood should be. We chose delta equal to 0.1 in the previous sec-
tion, but it all depends on the shape of the loss as a function of w and b. If the loss
changes too quickly compared to delta, we won’t have a very good idea of in which
direction the loss is decreasing the most.

What if we could make the neighborhood infinitesimally small, as in figure 5.67
That’s exactly what happens when we analytically take the derivative of the loss with
respect to a parameter. In a model with two or more parameters like the one we’re
dealing with, we compute the individual derivatives of the loss with respect to each
parameter and put them in a vector of derivatives: the gradient.

Down along the gradient 115

LoSS

Figure 5.6 Differences in the
estimated directions for descent
when evaluating them at discrete
locations versus analytically

COMPUTING THE DERIVATIVES

In order to compute the derivative of the loss with respect to a parameter, we can
apply the chain rule and compute the derivative of the loss with respect to its input
(which is the output of the model), times the derivative of the model with respect to
the parameter:

d loss_fn / dw = (d loss_fn / d t_p) * (d t_p / d w)

Recall that our model is a linear function, and our loss is a sum of squares. Let’s figure
out the expressions for the derivatives. Recalling the expression for the loss:

In[4]:

def loss_fn(t_p, t_c):
squared_diffs = (t_p - t_c)**2
return squared_diffs.mean /()

Remembering thatd x*2 / d x = 2 x, we get

In[11]:
def dloss_fn(t_p, t_c): QJ The division is from the
dsq diffs = 2 * (t.p - t.c) / t_p.size(0) derivative of mean.

return dsqg diffs

APPLYING THE DERIVATIVES TO THE MODEL
For the model, recalling that our model is

In[3]:

def model(t_u, w, b):
return w * t_u + b

we get these derivatives:

116

5.4.3

CHAPTER 5 The mechanics of learning

In[l12]:
def dmodel_dw(t_u, w, b):
return t_u

In[13]:
def dmodel_db(t_u, w, b):
return 1.0

DEFINING THE GRADIENT FUNCTION
Putting all of this together, the function returning the gradient of the loss with respect
to wand b is

The summation is the reverse of the

In[14]: broadcasting we implicitly do when
def grad_fn(t_u, t_c, t.p, w, b): applying the parameters to an entire
dloss_dtp = dloss_fn(t_p, t_c) vector of inputs in the model.

dloss_dw = dloss_dtp * dmodel_dw(t_u, w, b)
dloss_db = dloss_dtp * dmodel_db(t_u, w, b)
return torch.stack([dloss_dw.sum(), dloss_db.sum()])

The same idea expressed in mathematical notation is shown in figure 5.7. Again,
we’re averaging (that is, summing and dividing by a constant) over all the data points
to get a single scalar quantity for each partial derivative of the loss.

loss L ('w\‘,.;, (<))

VL =3 2L \o AL Im Y 3w

7*"“’ w6 Sm oW W b

Srael'uew+ &Ps (+‘7‘ Tm Jg,i
Aem/c‘:h ves /\Ma,béq

Figure 5.7 The derivative of the loss function with respect to the weights

Parame‘{'el S

Iterating to fit the model

We now have everything in place to optimize our parameters. Starting from a tentative
value for a parameter, we can iteratively apply updates to it for a fixed number of iter-
ations, or until w and b stop changing. There are several stopping criteria; for now,
we’ll stick to a fixed number of iterations.

THE TRAINING LOOP
Since we’re at it, let’s introduce another piece of terminology. We call a training itera-
tion during which we update the parameters for all of our training samples an epoch.

Down along the gradient 117

The complete training loop looks like this (code/plch5/1_parameter_estimation
dpynb):

In[15]:
def training_loop (n_epochs, learning rate, params, t_u, t_c):
for epoch in range(l, n_epochs + 1):
w, b = params

t_p = model(t_u, w, b) <+—— Forward pass

loss = loss_fn(t_p, t_c)

grad = grad_fn(t_u, t_c, t_p, w, b) <+—— Backward pass
params = params - learning _rate * grad

print ('Epoch %d, Loss %f' % (epoch, float(loss))) Thhloggngﬁnecan

be very verbose.
return params

The actual logging logic used for the output in this text is more complicated (see cell
15 in the same notebook: http://mng.bz/pBB8), but the differences are unimportant
for understanding the core concepts in this chapter.

Now, let’s invoke our training loop:

In[17]:
training_loop (
n_epochs = 100,

learning_rate = le-2,
params = torch.tensor([1.0, 0.0]),
t.u = t_u,
t_c = t_c)
out[l7]:
Epoch 1, Loss 1763.884644
Params: tensor([-44.1730, -0.82601])
Grad: tensor ([4517.2969, 82.60001)
Epoch 2, Loss 5802485.500000
Params: tensor([2568.4014, 45.163717)
Grad: tensor ([-261257.4219, -4598.97121)
Epoch 3, Loss 19408035840.000000
Params: tensor([-148527.7344, -2616.3933])
Grad: tensor ([15109614.0000, 266155.71881)

Epoch 10, Loss 90901154706620645225508955521810432.000000
Params: tensor([3.2144e+17, 5.6621e+15])
Grad: tensor ([-3.2700e+19, -5.7600e+171)
Epoch 11, Loss inf
Params: tensor ([-1.8590e+19, -3.2746e+171])
Grad: tensor ([1.8912e+21, 3.3313e+191)

tensor ([-1.8590e+19, -3.2746e+171])

http://mng.bz/pBB8

118 CHAPTER 5 The mechanics of learning

OVERTRAINING

Wait, what happened? Our training process literally blew up, leading to losses becom-
ing inf. This is a clear sign that params is receiving updates that are too large, and
their values start oscillating back and forth as each update overshoots and the next
overcorrects even more. The optimization process is unstable: it diverges instead of
converging to a minimum. We want to see smaller and smaller updates to params, not
larger, as shown in figure 5.8.

A T 8 A
2 2
d |
N ﬁ‘ - —
E F
b 0 «‘x A
(! L2 \3 2
N\ ’ - A —

Figure 5.8 Top: Diverging optimization on a convex function (parabola-like) due to large steps.
Bottom: Converging optimization with small steps.

How can we limit the magnitude of learning_rate * grad? Well, that looks easy. We
could simply choose a smaller learning_rate, and indeed, the learning rate is one of
the things we typically change when training does not go as well as we would like.* We
usually change learning rates by orders of magnitude, so we might try with le-3 or
le-4, which would decrease the magnitude of the updates by orders of magnitude.
Let’s go with 1e-4 and see how it works out:

In[18]:
training_loop (
n_epochs = 100,

8 The fancy name for this is hyperparameter tuning. Hyperparameler refers to the fact that we are training the
model’s parameters, but the hyperparameters control how this training goes. Typically these are more or less
set manually. In particular, they cannot be part of the same optimization.

5.4.4

Down along the gradient 119

learning_rate = le-4,
params = torch.tensor([1.0, 0.0]),
t.u = t_u,
t_c = t_c)
out[1l8]:

Epoch 1, Loss 1763.884644
Params: tensor ([0.5483, -0.00831)
Grad: tensor ([4517.2969, 82.6000])
Epoch 2, Loss 323.090546
Params: tensor([0.3623, -0.01181])
Grad: tensor ([1859.5493, 35.784317)
Epoch 3, Loss 78.929634
Params: tensor ([0.2858, -0.01351])
Grad: tensor ([765.4667, 16.51227)

Epoch 10, Loss 29.105242
Params: tensor ([0.2324, -0.0166])
Grad: tensor ([1.4803, 3.0544])
Epoch 11, Loss 29.104168
Params: tensor ([0.2323, -0.0169])
Grad: tensor ([0.5781, 3.0384])

Epoch 99, Loss 29.023582
Params: tensor ([0.2327, -0.04351])
Grad: tensor ([-0.0533, 3.02261])
Epoch 100, Loss 29.022669
Params: tensor ([0.2327, -0.04381)
Grad: tensor ([-0.0532, 3.02261])

tensor ([0.2327, -0.0438])

Nice—the behavior is now stable. But there’s another problem: the updates to param-
eters are very small, so the loss decreases very slowly and eventually stalls. We could
obviate this issue by making learning_rate adaptive: that is, change according to the
magnitude of updates. There are optimization schemes that do that, and we’ll see one
toward the end of this chapter, in section 5.5.2.

However, there’s another potential troublemaker in the update term: the gradient
itself. Let’s go back and look at grad at epoch 1 during optimization.

Normalizing inputs

We can see that the first-epoch gradient for the weight is about 50 times larger than
the gradient for the bias. This means the weight and bias live in differently scaled
spaces. If this is the case, a learning rate that’s large enough to meaningfully update
one will be so large as to be unstable for the other; and a rate that’s appropriate for
the other won’t be large enough to meaningfully change the first. That means we’re
not going to be able to update our parameters unless we change something about our
formulation of the problem. We could have individual learning rates for each parame-
ter, but for models with many parameters, this would be too much to bother with; it’s
babysitting of the kind we don’t like.

120

CHAPTER 5 The mechanics of learning

There’s a simpler way to keep things in check: changing the inputs so that the gra-
dients aren’t quite so different. We can make sure the range of the input doesn’t get
too far from the range of -1.0 to 1.0, roughly speaking. In our case, we can achieve
something close enough to that by simply multiplying t_u by 0.1:

In[19]:
t_un = 0.1 * t_u

Here, we denote the normalized version of t_u by appending an n to the variable
name. At this point, we can run the training loop on our normalized input:

In[20]:
training_ loop (
n_epochs = 100,

learning_rate = le-2,
9= We’ve updated t_u to

params = torch.tensor([1.0, 0.0]),
our new, rescaled t un.
t_u = t_un, -
t_c = t_c)
Out[20]:

Epoch 1, Loss 80.364342
Params: tensor ([1.7761, 0.10641])
Grad: tensor ([-77.6140, -10.64001])
Epoch 2, Loss 37.574917
Params: tensor([2.0848, 0.13031])
Grad: tensor ([-30.8623, -2.3864])
Epoch 3, Loss 30.871077
Params: tensor([2.2094, 0.12171])
Grad: tensor ([-12.4631, 0.8587])

Epoch 10, Loss 29.030487
Params: tensor ([2.3232, -0.07101])
Grad: tensor ([-0.5355, 2.92951])
Epoch 11, Loss 28.941875
Params: tensor ([2.3284, -0.10031)
Grad: tensor ([-0.5240, 2.92641])

Epoch 99, Loss 22.214186
Params: tensor ([2.7508, -2.4910])
Grad: tensor ([-0.4453, 2.5208])
Epoch 100, Loss 22.148710
Params: tensor ([2.7553, -2.5162])
Grad: tensor ([-0.4446, 2.5165])

tensor ([2.7553, -2.51621)

Even though we set our learning rate back to 1e-2, parameters don’t blow up during
iterative updates. Let’s take a look at the gradients: they’re of similar magnitude, so
using a single learning_rate for both parameters works just fine. We could probably
do a better job of normalization than a simple rescaling by a factor of 10, but since
doing so is good enough for our needs, we’re going to stick with that for now.

Down along the gradient 121

NOTE The normalization here absolutely helps get the network trained, but
you could make an argument that it’s not strictly needed to optimize the
parameters for this particular problem. That’s absolutely true! This problem is
small enough that there are numerous ways to beat the parameters into sub-
mission. However, for larger, more sophisticated problems, normalization is an
easy and effective (if not crucial!) tool to use to improve model convergence.

Let’s run the loop for enough iterations to see the changes in params get small. We’ll
change n_epochs to 5,000:

In[21]:
params = training_loop (
n_epochs = 5000,
learning_rate = le-2,
params = torch.tensor([1.0, 0.0]),
t_u = t_un,
t_c = t_c,
print_params = False)
params
Oout[21]:

Epoch 1, Loss 80.364342
Epoch 2, Loss 37.574917
Epoch 3, Loss 30.871077

Epoch 10, Loss 29.030487
Epoch 11, Loss 28.941875

Epoch 99, Loss 22.214186
Epoch 100, Loss 22.148710

Epoch 4000, Loss 2.927680
Epoch 5000, Loss 2.927648

tensor ([5.3671, -17.3012])

Good: our loss decreases while we change parameters along the direction of gradient
descent. It doesn’t go exactly to zero; this could mean there aren’t enough iterations to
converge to zero, or that the data points don’tsit exactly on a line. As we anticipated, our
measurements were not perfectly accurate, or there was noise involved in the reading.
But look: the values for w and b look an awful lot like the numbers we need to use
to convert Celsius to Fahrenheit (after accounting for our earlier normalization when
we multiplied our inputs by 0.1). The exact values would be w=5.5556 and b=-
17.7778. Our fancy thermometer was showing temperatures in Fahrenheit the whole
time. No big discovery, except that our gradient descent optimization process works!

122

5.4.5

CHAPTER 5 The mechanics of learning

Visualizing (again)

Let’s revisit something we did right at the start: plotting our data. Seriously, this is the
first thing anyone doing data science should do. Always plot the heck out of the data:

In[22]:
$matplotlib inline

from matplotlib import pyplot as plt Remem.ber that we’re tr?ining on the
normalized unknown units. We also

t p = model (t_un, *params) use argument unpacking.

fig = plt.figure(dpi=600)
plt.xlabel ("Temperature (°Fahrenheit)")

plt.ylabel ("Temperature (°Celsius)") But we’re plotting the
plt.plot (t_u.numpy(), t_p.detach().numpy()) q—‘ raw unknown values.
plt.plot(t_u.numpy(), t_c.numpy(), 'o')

We are using a Python trick called argument unpacking here: *params means to pass the
elements of params as individual arguments. In Python, this is usually done with lists
or tuples, but we can also use argument unpacking with PyTorch tensors, which are
split along the leading dimension. So here, model (t_un, *params) is equivalent to
model (t_un, params[0], params[1l]).

This code produces figure 5.9. Our linear model is a good model for the data, it
seems. It also seems our measurements are somewhat erratic. We should either call
our optometrist for a new pair of glasses or think about returning our fancy ther-
mometer.

TEMPERATURE (°CELSILY)

20 30 4o 50 ©o T0 30
TEMPERATURE (°FAHRENHEIT)

Figure 5.9 The plot of our linear-fit model (solid line) versus our input data (circles)

5.5

5.5.1

PyTorch’s autograd: Backpropagating all things 123

PyTorch’s autograd: Backpropagating all things

In our little adventure, we just saw a simple example of backpropagation: we com-
puted the gradient of a composition of functions—the model and the loss—with
respect to their innermost parameters (w and b) by propagating derivatives backward
using the chain rule. The basic requirement here is that all functions we’re dealing
with can be differentiated analytically. If this is the case, we can compute the gradi-
ent—what we earlier called “the rate of change of the loss”—with respect to the
parameters in one sweep.

Even if we have a complicated model with millions of parameters, as long as our
model is differentiable, computing the gradient of the loss with respect to the param-
eters amounts to writing the analytical expression for the derivatives and evaluating
them once. Granted, writing the analytical expression for the derivatives of a very deep
composition of linear and nonlinear functions is not a lot of fun.® It isn’t particularly
quick, either.

Computing the gradient automatically

This is when PyTorch tensors come to the rescue, with a PyTorch component called
autograd. Chapter 3 presented a comprehensive overview of what tensors are and what
functions we can call on them. We left out one very interesting aspect, however:
PyTorch tensors can remember where they come from, in terms of the operations and
parent tensors that originated them, and they can automatically provide the chain of
derivatives of such operations with respect to their inputs. This means we won’t need
to derive our model by hand;'’ given a forward expression, no matter how nested,
PyTorch will automatically provide the gradient of that expression with respect to its
input parameters.

APPLYING AUTOGRAD

At this point, the best way to proceed is to rewrite our thermometer calibration code,
this time using autograd, and see what happens. First, we recall our model and loss
function.

Listing 5.1 code/plch5/2_autograd.ipynb

In[3]:
def model (t_u, w, b):
return w * t_u + b

In[4]:

def loss_fn(t_p, t_c):
squared_diffs = (t_p - t_c)**2
return squared_diffs.mean/()

¢ Or maybe it is; we won’t judge how you spend your weekend!
19 Bummer! What are we going to do on Saturdays, now?

124

CHAPTER 5 The mechanics of learning

Let’s again initialize a parameters tensor:

In[5]:
params = torch.tensor([1.0, 0.0], requires_grad=True)

USING THE GRAD ATTRIBUTE

Notice the requires_grad=True argument to the tensor constructor? That argument
is telling PyTorch to track the entire family tree of tensors resulting from operations
on params. In other words, any tensor that will have params as an ancestor will have
access to the chain of functions that were called to get from params to that tensor. In
case these functions are differentiable (and most PyTorch tensor operations will be),
the value of the derivative will be automatically populated as a grad attribute of the
params tensor.

In general, all PyTorch tensors have an attribute named grad. Normally, it’s None:

In[6]:
params.grad is None

Oout[6]:
True

All we have to do to populate it is to start with a tensor with requires_grad set to
True, then call the model and compute the loss, and then call backward on the loss
tensor:

In[7]:
loss = loss_fn(model (t_u, *params), t_c)
loss.backward ()

params.grad

out[7]:
tensor ([4517.2969, 82.60007])

At this point, the grad attribute of params contains the derivatives of the loss with
respect to each element of params.

When we compute our loss while the parameters w and b require gradients, in
addition to performing the actual computation, PyTorch creates the autograd graph
with the operations (in black circles) as nodes, as shown in the top row of fig-
ure 5.10. When we call loss.backward (), PyTorch traverses this graph in the reverse
direction to compute the gradients, as shown by the arrows in the bottom row of
the figure.

PyTorch’s autograd: Backpropagating all things 125

rytu?rcs-aml Talse 5
& L
X =@ —>®— 0 ——>@-—-> ﬂagg

3‘3&”’“ 8‘3‘l=”°"9 (aluims-%faé = Irve
R0 =

iogg_LéckoJas’cM_)
{
x-—»a%——-—>®——>@ —->@-—-> ioss
!

W

Figure 5.10 The forward graph

xa,&: MWS Saz’l: Aloss and backward graph of the model
IV b as computed with autograd

ACCUMULATING GRAD FUNCTIONS
We could have any number of tensors with requires_grad set to True and any compo-
sition of functions. In this case, PyTorch would compute the derivatives of the loss
throughout the chain of functions (the computation graph) and accumulate their val-
ues in the grad attribute of those tensors (the leaf nodes of the graph).

Alert! Big gotcha ahead. This is something PyTorch newcomers—and a lot of more
experienced folks, too—trip up on regularly. We just wrote accumulate, not store.

WARNING Calling backward will lead derivatives to accumulate at leaf nodes.
We need to zero the gradient explicitly after using it for parameter updates.

Let’s repeat together: calling backward will lead derivatives to accumulate at leaf nodes.
So if backward was called earlier, the loss is evaluated again, backward is called again
(as in any training loop), and the gradient at each leaf is accumulated (that is,
summed) on top of the one computed at the previous iteration, which leads to an
incorrect value for the gradient.

In order to prevent this from occurring, we need to zero the gradient explicitly at each
iteration. We can do this easily using the in-place zero_ method:

In[8]:
if params.grad is not None:
params.grad.zero_ ()

126

CHAPTER 5 The mechanics of learning

NOTE You might be curious why zeroing the gradient is a required step
instead of zeroing happening automatically whenever we call backward.
Doing it this way provides more flexibility and control when working with gra-
dients in complicated models.

Having this reminder drilled into our heads, let’s see what our autograd-enabled
training code looks like, start to finish:

In[9]:
def training_loop(n_epochs, learning_rate, params, t_u, t_c):
for epoch in range(l, n_epochs + 1):

if params.grad is not None:

This could be done at any point in the
params.grad.zero_ ()

loop prior to calling loss.backward().

t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)
loss.backward()

This is a somewhat cumbersome bit
with torch.no_grad(): of code, but as we’ll see in the next
params -= learning rate * params.grad section, it’s not an issue in practice.

if epoch % 500 ==
print ('Epoch %d, Loss %f' % (epoch, float(loss)))

return params

Note that our code updating params is not quite as straightforward as we might have
expected. There are two particularities. First, we are encapsulating the update in a
no_grad context using the Python with statement. This means within the with block,
the PyTorch autograd mechanism should look away:'" that is, not add edges to the for-
ward graph. In fact, when we are executing this bit of code, the forward graph that
PyTorch records is consumed when we call backward, leaving us with the params leaf
node. But now we want to change this leaf node before we start building a fresh for-
ward graph on top of it. While this use case is usually wrapped inside the optimizers
we discuss in section 5.5.2, we will take a closer look when we see another common use
of no_grad in section 5.5.4.

Second, we update params in place. This means we keep the same params tensor
around but subtract our update from it. When using autograd, we usually avoid in-
place updates because PyTorch’s autograd engine might need the values we would be
modifying for the backward pass. Here, however, we are operating without autograd,
and it is beneficial to keep the params tensor. Not replacing the parameters by assign-
ing new tensors to their variable name will become crucial when we register our
parameters with the optimizer in section 5.5.2.

" n reality, it will track that something changed params using an in-place operation.

5.5.2

PyTorch’s autograd: Backpropagating all things 127

Let’s see if it works:

In[10]: Addhg
training loop (requires_grad=True is key.

n_epochs = 5000,

learning_rate = le-2,

params = torch.tensor ([1.0, 0.0], requires_grad=True),

t_u = t_un,

t c =t c) j Again, we’re using the

normalized t_un instead of t_u.

Oout[l1l0]:

Epoch 500, Loss 7.860116
Epoch 1000, Loss 3.828538
Epoch 1500, Loss 3.092191
Epoch 2000, Loss 2.957697
Epoch 2500, Loss 2.933134
Epoch 3000, Loss 2.928648
Epoch 3500, Loss 2.927830
Epoch 4000, Loss 2.927679
Epoch 4500, Loss 2.927652
Epoch 5000, Loss 2.927647

tensor ([5.3671, -17.3012], requires_grad=True)

The result is the same as we got previously. Good for us! It means that while we are
capable of computing derivatives by hand, we no longer need to.

Optimizers a la carte

In the example code, we used vanilla gradient descent for optimization, which worked
fine for our simple case. Needless to say, there are several optimization strategies and
tricks that can assist convergence, especially when models get complicated.

We’ll dive deeper into this topic in later chapters, but now is the right time to
introduce the way PyTorch abstracts the optimization strategy away from user code:
that is, the training loop we’ve examined. This saves us from the boilerplate busywork
of having to update each and every parameter to our model ourselves. The torch
module has an optim submodule where we can find classes implementing different
optimization algorithms. Here’s an abridged list (code/plchb/3_optimizers.ipynb):

In([5]:
import torch.optim as optim

dir (optim)

Out[5]:
['ASGD"',
'Adadelta’,
'Adagrad’,
'Adam’',
'Adamax ',
'LBFGS',
'Optimizer',

128 CHAPTER 5 The mechanics of learning

'RMSprop',
'Rprop',
'SGD!',
'SparseAdam',

Every optimizer constructor takes a list of parameters (aka PyTorch tensors, typically
with requires_grad set to True) as the first input. All parameters passed to the opti-
mizer are retained inside the optimizer object so the optimizer can update their val-
ues and access their grad attribute, as represented in figure 5.11.

A | & it it
vpy
mode] ‘P_,‘ mode] ——>
Pan\nS | P&fMS |
{
]

<°P+i'"iw§ par\ims)) G‘j'imm_r(puims 1)

C >

— MOJE‘ “‘> — che| -">
.Bu,kwalJ parems |

Pavfh"h.? |
1

[}

upJa*'e

: :
|
‘0P+imi=be(‘ Parfvg(i)) ‘oﬁhmiw (F’“;"'a";l Apsamg

Figure 5.11 (A) Conceptual representation of how an optimizer holds a reference to
parameters. (B) After a loss is computed from inputs, (C) a call to .backward leads to
.grad being populated on parameters. (D) At that point, the optimizer can access
.grad and compute the parameter updates.

Each optimizer exposes two methods: zero_grad and step. zero_grad zeroes the
grad attribute of all the parameters passed to the optimizer upon construction. step
updates the value of those parameters according to the optimization strategy imple-
mented by the specific optimizer.

USING A GRADIENT DESCENT OPTIMIZER
Let’s create params and instantiate a gradient descent optimizer:

In[6]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = le-5

optimizer = optim.SGD([params], lr=learning_rate)

PyTorch’s autograd: Backpropagating all things 129

Here SGD stands for stochastic gradient descent. Actually, the optimizer itself is exactly a

vanilla gradient descent (as long as the momentum argument is set to 0.0, which is the

default). The term stochastic comes from the fact that the gradient is typically obtained

by averaging over a random subset of all input samples, called a minibatch. However, the

optimizer does not know if the loss was evaluated on all the samples (vanilla) or a ran-

dom subset of them (stochastic), so the algorithm is literally the same in the two cases.
Anyway, let’s take our fancy new optimizer for a spin:

In[7]:

t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)
loss.backward()

optimizer.step ()
params

out[7]:
tensor ([9.5483e-01, -8.2600e-04], requires_grad=True)

The value of params is updated upon calling step without us having to touch it our-
selves! What happens is that the optimizer looks into params.grad and updates
params, subtracting learning_rate times grad from it, exactly as in our former hand-
rolled code.

Ready to stick this code in a training loop? Nope! The big gotcha almost got us—
we forgot to zero out the gradients. Had we called the previous code in a loop, gradi-
ents would have accumulated in the leaves at every call to backward, and our gradient
descent would have been all over the place! Here’s the loop-ready code, with the extra
zero_grad at the correct spot (right before the call to backward):

In[8]:

params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = le-2

optimizer = optim.SGD([params], lr=learning_rate)

t_p = model (t_un, *params)

loss = loss_fn(t_p, t_c) As before, the exact placement of
this call is somewhat arbitrary. It

optimizer.zero grad() could be earlier in the loop as well.

loss.backward()

optimizer.step ()

params

Oout[8]:
tensor ([1.7761, 0.1064], requires_grad=True)

Perfect! See how the optim module helps us abstract away the specific optimization
scheme? All we have to do is provide a list of params to it (that list can be extremely

130

CHAPTER 5 The mechanics of learning

long, as is needed for very deep neural network models), and we can forget about the
details.
Let’s update our training loop accordingly:

In[9]:
def training_loop (n_epochs, optimizer, params, t_u, t_c):
for epoch in range(l, n_epochs + 1):
t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)

optimizer.zero_grad()
loss.backward()
optimizer.step()

if epoch % 500 ==
print ('Epoch %d, Loss %$f' % (epoch, float(loss)))

return params

In[10]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = le-2
optimizer = optim.SGD([params], lr=learning rate)
It’s important that both
training_loop(params are the same object;
n_epochs = 5000, otherwise the optimizer won’t
optimizer = optimizer, know what parameters were
params = params, used by the model.
t_u = t_un,
t_c = t_c)
Out[10]:

Epoch 500, Loss 7.860118

Epoch 1000, Loss 3.828538
Epoch 1500, Loss 3.092191
Epoch 2000, Loss 2.957697
Epoch 2500, Loss 2.933134
Epoch 3000, Loss 2.928648
Epoch 3500, Loss 2.927830
Epoch 4000, Loss 2.927680
Epoch 4500, Loss 2.927651
Epoch 5000, Loss 2.927648

tensor ([5.3671, -17.3012], requires_grad=True)

Again, we get the same result as before. Great: this is further confirmation that we
know how to descend a gradient by hand!

TESTING OTHER OPTIMIZERS
In order to test more optimizers, all we have to do is instantiate a different optimizer,
say Adam, instead of SGD. The rest of the code stays as it is. Pretty handy stuff.

We won’t go into much detail about Adam; suffice to say that it is a more sophisti-
cated optimizer in which the learning rate is set adaptively. In addition, it is a lot less
sensitive to the scaling of the parameters—so insensitive that we can go back to using

5.5.3

PyTorch’s autograd: Backpropagating all things 131

the original (non-normalized) input t_u, and even increase the learning rate to le-1,
and Adam won’t even blink:

In[11]:

params = torch.tensor([1.0, 0.0], requires_grad=True)

learning_rate = le-1

optimizer = optim.Adam([params], lr=learning_rate) <+ New optimizer class

training_loop (
n_epochs = 2000,
optimizer = optimizer,
params = params,

E_u i E_u; We’re back to the original
= = € t_u as our input.
Out[11]:

Epoch 500, Loss 7.612903

Epoch 1000, Loss 3.086700
Epoch 1500, Loss 2.928578
Epoch 2000, Loss 2.927646

tensor ([0.5367, -17.3021]1, requires_grad=True)

The optimizer is not the only flexible part of our training loop. Let’s turn our atten-
tion to the model. In order to train a neural network on the same data and the same
loss, all we would need to change is the model function. It wouldn’t make particular
sense in this case, since we know that converting Celsius to Fahrenheit amounts to a
linear transformation, but we’ll do it anyway in chapter 6. We’ll see quite soon that
neural networks allow us to remove our arbitrary assumptions about the shape of the
function we should be approximating. Even so, we’ll see how neural networks manage
to be trained even when the underlying processes are highly nonlinear (such in the
case of describing an image with a sentence, as we saw in chapter 2).

We have touched on a lot of the essential concepts that will enable us to train
complicated deep learning models while knowing what’s going on under the hood:
backpropagation to estimate gradients, autograd, and optimizing weights of models
using gradient descent or other optimizers. Really, there isn’t a lot more. The rest is
mostly filling in the blanks, however extensive they are.

Next up, we're going to offer an aside on how to split our samples, because that
sets up a perfect use case for learning how to better control autograd.

Training, validation, and overfitting

Johannes Kepler taught us one last thing that we didn’t discuss so far, remember? He
kept part of the data on the side so that he could validate his models on independent
observations. This is a vital thing to do, especially when the model we adopt could
potentially approximate functions of any shape, as in the case of neural networks. In
other words, a highly adaptable model will tend to use its many parameters to make
sure the loss is minimal at¢ the data points, but we’ll have no guarantee that the model

132

CHAPTER 5 The mechanics of learning

behaves well away from or in between the data points. After all, that’s what we’re asking
the optimizer to do: minimize the loss at the data points. Sure enough, if we had inde-
pendent data points that we didn’t use to evaluate our loss or descend along its nega-
tive gradient, we would soon find out that evaluating the loss at those independent
data points would yield higher-than-expected loss. We have already mentioned this
phenomenon, called overfitting.

The first action we can take to combat overfitting is recognizing that it might hap-
pen. In order to do so, as Kepler figured out in 1600, we must take a few data points
out of our dataset (the validation set) and only fit our model on the remaining data
points (the training set), as shown in figure 5.12. Then, while we’re fitting the model,
we can evaluate the loss once on the training set and once on the validation set. When
we’re trying to decide if we’ve done a good job of fitting our model to the data, we
must look at both!

VALIDATION

TRAINING SeT

SET

l -, - 5 PERFORMANCE

PARAMETER
OPTIMIZATION
(TRAINING)

- ‘/?I/

Figure 5.12 Conceptual representation of a data-
producing process and the collection and use of
training data and independent validation data

o \\;

EVALUATING THE TRAINING LOSS

The training loss will tell us if our model can fit the training set at all—in other words,
if our model has enough capacity to process the relevant information in the data. If
our mysterious thermometer somehow managed to measure temperatures using a log-
arithmic scale, our poor linear model would not have had a chance to fit those mea-
surements and provide us with a sensible conversion to Celsius. In that case, our
training loss (the loss we were printing in the training loop) would stop decreasing
well before approaching zero.

PyTorch’s autograd: Backpropagating all things 133

A deep neural network can potentially approximate complicated functions, pro-
vided that the number of neurons, and therefore parameters, is high enough. The
fewer the number of parameters, the simpler the shape of the function our network will
be able to approximate. So, rule 1: if the training loss is not decreasing, chances are the
model is too simple for the data. The other possibility is that our data just doesn’t con-
tain meaningful information that lets it explain the output: if the nice folks at the shop
sell us a barometer instead of a thermometer, we will have little chance of predicting
temperature in Celsius from just pressure, even if we use the latest neural network
architecture from Quebec (www.umontreal.ca/en/artificialintelligence).

GENERALIZING TO THE VALIDATION SET

What about the validation set? Well, if the loss evaluated in the validation set doesn’t
decrease along with the training set, it means our model is improving its fit of the sam-
ples it is seeing during training, but it is not generalizing to samples outside this precise
set. As soon as we evaluate the model at new, previously unseen points, the values of
the loss function are poor. So, rule 2: if the training loss and the validation loss
diverge, we’re overfitting.

Let’s delve into this phenomenon a little, going back to our thermometer exam-
ple. We could have decided to fit the data with a more complicated function, like a
piecewise polynomial or a really large neural network. It could generate a model
meandering its way through the data points, as in figure 5.13, just because it pushes
the loss very close to zero. Since the behavior of the function away from the data
points does not increase the loss, there’s nothing to keep the model in check for
inputs away from the training data points.

4\
—
I
1\
Figure 5.13 Rather
extreme example of
—p
7 overfitting

https://www.umontreal.ca/en/artificialintelligence/

134

CHAPTER 5 The mechanics of learning

What’s the cure, though? Good question. From what we just said, overfitting really
looks like a problem of making sure the behavior of the model in between data points
is sensible for the process we’re trying to approximate. First of all, we should make
sure we get enough data for the process. If we collected data from a sinusoidal pro-
cess by sampling it regularly at a low frequency, we would have a hard time fitting a
model to it.

Assuming we have enough data points, we should make sure the model that is
capable of fitting the training data is as regular as possible in between them. There are
several ways to achieve this. One is adding penalization terms to the loss function, to
make it cheaper for the model to behave more smoothly and change more slowly (up
to a point). Another is to add noise to the input samples, to artificially create new data
points in between training data samples and force the model to try to fit those, too.
There are several other ways, all of them somewhat related to these. But the best favor
we can do to ourselves, at least as a first move, is to make our model simpler. From an
intuitive standpoint, a simpler model may not fit the training data as perfectly as a
more complicated model would, but it will likely behave more regularly in between
data points.

We’ve got some nice trade-offs here. On the one hand, we need the model to have
enough capacity for it to fit the training set. On the other, we need the model to avoid
overfitting. Therefore, in order to choose the right size for a neural network model in
terms of parameters, the process is based on two steps: increase the size until it fits,
and then scale it down until it stops overfitting.

We’ll see more about this in chapter 12—we’ll discover that our life will be a bal-
ancing act between fitting and overfitting. For now, let’s get back to our example and
see how we can split the data into a training set and a validation set. We’ll do it by
shuffling t_u and t_c the same way and then splitting the resulting shuffled tensors
into two parts.

SPLITTING A DATASET
Shuffling the elements of a tensor amounts to finding a permutation of its indices.
The randperm function does exactly this:

In[12]:
n_samples = t_u.shapel0]
n_val = int (0.2 * n_samples)

shuffled_indices = torch.randperm(n_samples)
train_indices = shuffled_indices[:-n_val]
. 9.
val_indices = shuffled_indices[-n_val:] &ncethgsearerandom,dont
be surprised if your values end

train indices, val indices up different from here on out.

Oout[12]:
(tensor([9, 6, 5, 8, 4, 7, 0, 1, 3]), tensor([2, 10]))

PyTorch’s autograd: Backpropagating all things 135

We just got index tensors that we can use to build training and validation sets starting
from the data tensors:

In[13]:
train_t_u = t_ul[train_indices]
train_t_c = t_c[train_indices]

val_t_u = t_ulval_indices]
val_t_c = t_c[val_indices]

train_t_un

= 0.1 * train_t_u
val_t_un = 0.1 *

val_t_u

Our training loop doesn’t really change. We just want to additionally evaluate the vali-
dation loss at every epoch, to have a chance to recognize whether we’re overfitting:

In[14]:
def training_loop (n_epochs, optimizer, params, train_t_u, val_t_u,
train_t_c, val_t_c):
for epoch in range(l, n_epochs + 1):

train_t_p = model (train_t_u, *params) . .
These two pairs of lines are the

train_loss = loss_fn(train_t_p, train_t_c) e

same except for the train_* vs.
%

val_t_p = model (val_t_u, *params) VM_ inputs.

val_loss = loss_fn(val_t_p, val_t_c)

optimizer.zero_grad() Note that there is no val_loss.backward()

train_loss.backward () here, since we don’t want to train the

optimizer.step() model on the validation data.

if epoch <= 3 or epoch % 500 ==
print (f"Epoch {epoch}, Training loss {train_loss.item():.4f},"
f" Validation loss {val_loss.item():.4f}")

return params

In[15]:

params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = le-2

optimizer = optim.SGD([params], lr=learning_rate)

training_loop (
n_epochs = 3000,

optimizer = optimizer,

params = params,

train_t_u = train_t_un, Since we’re using SGD again, we’re
val_t u = val_t_un, back to using normalized inputs.
train_t_c = train_t_c,

val_t_c = val_t_c)

Out[15]:

Epoch 1, Training loss 66.5811, Validation loss 142.3890
Epoch 2, Training loss 38.8626, Validation loss 64.0434

Epoch 3, Training loss 33.3475, Validation loss 39.4590

Epoch 500, Training loss 7.1454, Validation loss 9.1252

136

CHAPTER 5 The mechanics of learning

Epoch 1000, Training loss 3.5940, Validation loss 5.3110
Epoch 1500, Training loss 3.0942, Validation loss 4.1611
Epoch 2000, Training loss 3.0238, Validation loss 3.7693
Epoch 2500, Training loss 3.0139, Validation loss 3.6279
Epoch 3000, Training loss 3.0125, Validation loss 3.5756

tensor ([5.1964, -16.7512]1, requires_grad=True)

Here we are not being entirely fair to our model. The validation set is really small, so
the validation loss will only be meaningful up to a point. In any case, we note that the
validation loss is higher than our training loss, although not by an order of magni-
tude. We expect a model to perform better on the training set, since the model
parameters are being shaped by the training set. Our main goal is to also see both the
training loss and the validation loss decreasing. While ideally both losses would be
roughly the same value, as long as the validation loss stays reasonably close to the
training loss, we know that our model is continuing to learn generalized things about
our data. In figure 5.14, case C is ideal, while D is acceptable. In case A, the model
isn’t learning at all; and in case B, we see overfitting. We’ll see more meaningful exam-
ples of overfitting in chapter 12.

LOSS 1\ LOSS 1\

p\ b o i i T LY Es

T L

- ->
ITERATIONS ITERATIONS

.
N
.ﬁ‘ wEn
LA ey o2 R
ITERATIONS ITERATIONS

Figure 5.14 Overfitting scenarios when looking at the training (solid line) and validation (dotted line)
losses. (A) Training and validation losses do not decrease; the model is not learning due to no
information in the data or insufficient capacity of the model. (B) Training loss decreases while
validation loss increases: overfitting. (C) Training and validation losses decrease exactly in tandem.
Performance may be improved further as the model is not at the limit of overfitting. (D) Training and
validation losses have different absolute values but similar trends: overfitting is under control.

5.54

PyTorch’s autograd: Backpropagating all things 137

Autograd nits and switching it off

From the previous training loop, we can appreciate that we only ever call backward on
train_loss. Therefore, errors will only ever backpropagate based on the training
set—the validation set is used to provide an independent evaluation of the accuracy of
the model’s output on data that wasn’t used for training.

The curious reader will have an embryo of a question at this point. The model is
evaluated twice—once on train_t_u and once on val_t_u—and then backward is
called. Won'’t this confuse autograd? Won’t backward be influenced by the values gen-
erated during the pass on the validation set?

Luckily for us, this isn’t the case. The first line in the training loop evaluates model
on train_t_u to produce train_t_p. Then train_loss is evaluated from train_t_p.
This creates a computation graph that links train_t_u to train_t_p to train_loss.
When model is evaluated again on val_t_u, it produces val_t_p and val_loss. In this
case, a separate computation graph will be created that links val_t_u to val_t_p to
val_loss. Separate tensors have been run through the same functions, model and
loss_fn, generating separate computation graphs, as shown in figure 5.15.

t => V\nOL’l&l (x, PQI’:?VMS') - -tp Yeain

u't're,’m
A :
t,u[- m«le,((x, 'paran - l:?,a(
tu‘t’(c\,’-n - VMOJ&l (XI Par‘?""‘g) - -tp“l'r;‘.,,\ - loss +f&iv\
Lol = molel (x, poraws) = t?“l ~ loss |
— —
C t'.l'he,'uvx =3 V\w(lt’/l (X, F;r?"‘;i) - -tp"l’ra‘.,\ = l°ss+raiqeL3’9kwaé°é

twal -2 vnoiel (xr »nglav:\éb = {:T""’l = los vl

Figure 5.15 Diagram showing how gradients propagate through a graph with two
losses when .backward is called on one of them

The only tensors these two graphs have in common are the parameters. When we call
backward on train_loss, we run backward on the first graph. In other words, we
accumulate the derivatives of train_loss with respect to the parameters based on the
computation generated from train_t_u.

If we (incorrectly) called backward on val_loss as well, we would accumulate the
derivatives of val_loss with respect to the parameters on the same leaf nodes. Remember
the zero_grad thing, whereby gradients are accumulated on top of each other every
time we call backward unless we zero out the gradients explicitly? Well, here something

138 CHAPTER 5 The mechanics of learning

very similar would happen: calling backward on val_loss would lead to gradients accu-
mulating in the params tensor, on top of those generated during the train_loss.back-
ward () call. In this case, we would effectively train our model on the whole dataset (both
training and validation), since the gradient would depend on both. Pretty interesting.

There’s another element for discussion here. Since we’re not ever calling back-
ward on val_loss, why are we building the graph in the first place? We could in fact
just call model and loss_fn as plain functions, without tracking the computation.
However optimized, building the autograd graph comes with additional costs that we
could totally forgo during the validation pass, especially when the model has millions
of parameters.

In order to address this, PyTorch allows us to switch off autograd when we don’t
need it, using the torch.no_grad context manager.12 We won’t see any meaningful
advantage in terms of speed or memory consumption on our small problem. How-
ever, for larger models, the differences can add up. We can make sure this works by
checking the value of the requires_grad attribute on the val_loss tensor:

In[1l6]:
def training_loop (n_epochs, optimizer, params, train_t_u, val_t_u,
train_t_c, val_t_c):
for epoch in range(l, n_epochs + 1):
train_t_p = model (train_t_u, *params)

Context train_loss = loss_fn(train_t_p, train_t_c)
manager
here with torch.no_grad(): Checks that our output
val_t_p = model (val_t_u, *params) requires_grad args are
val_loss = loss_fn(val_t_p, val_t_c) forced to False inside
assert val_loss.requires_grad == False this block

optimizer.zero_grad()
train_loss.backward()
optimizer.step()

Using the related set_grad_enabled context, we can also condition the code to run
with autograd enabled or disabled, according to a Boolean expression—typically indi-
cating whether we are running in training or inference mode. We could, for instance,
define a calc_forward function that takes data as input and runs model and loss_fn
with or without autograd according to a Boolean train_is argument:

In[17]:
def calc_forward(t_u, t_c, is_train):
with torch.set_grad_enabled(is_train):
t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)
return loss

12 We should not think that using torch.no_grad necessarily implies that the outputs do not require gradients.
There are particular circumstances (involving views, as discussed in section 3.8.1) in which requires_grad
is not set to False even when created in a no_grad context. It is best to use the detach function if we need
to be sure.

5.6

5.7

5.8

Summary 139

Conclusion

We started this chapter with a big question: how is it that a machine can learn from
examples? We spent the rest of the chapter describing the mechanism with which a
model can be optimized to fit data. We chose to stick with a simple model in order to
see all the moving parts without unneeded complications.

Now that we’ve had our fill of appetizers, in chapter 6 we’ll finally get to the main
course: using a neural network to fit our data. We’ll work on solving the same
thermometer problem, but with the more powerful tools provided by the torch.nn
module. We’ll adopt the same spirit of using this small problem to illustrate the
larger uses of PyTorch. The problem doesn’t need a neural network to reach a
solution, but it will allow us to develop a simpler understanding of what’s required to
train a neural network.

Exercise

Redefine the model tobew2 * t_u ** 2 + wl * t_u + b.
What parts of the training loop, and so on, need to change to accommodate
this redefinition?
What parts are agnostic to swapping out the model?
Is the resulting loss higher or lower after training?
Is the actual result better or worse?

Summary

Linear models are the simplest reasonable model to use to fit data.

Convex optimization techniques can be used for linear models, but they do not
generalize to neural networks, so we focus on stochastic gradient descent for
parameter estimation.

Deep learning can be used for generic models that are not engineered for solv-
ing a specific task, but instead can be automatically adapted to specialize them-
selves on the problem at hand.

Learning algorithms amount to optimizing parameters of models based on
observations. A loss function is a measure of the error in carrying out a task,
such as the error between predicted outputs and measured values. The goal is
to get the loss function as low as possible.

The rate of change of the loss function with respect to the model parameters
can be used to update the same parameters in the direction of decreasing loss.
The optim module in PyTorch provides a collection of ready-to-use optimizers
for updating parameters and minimizing loss functions.

Optimizers use the autograd feature of PyTorch to compute the gradient for
each parameter, depending on how that parameter contributes to the final out-
put. This allows users to rely on the dynamic computation graph during com-
plex forward passes.

140

CHAPTER 5 The mechanics of learning

Context managers like with torch.no_grad(): can be used to control auto-
grad’s behavior.

Data is often split into separate sets of training samples and validation samples.
This lets us evaluate a model on data it was not trained on.

Overfitting a model happens when the model’s performance continues to
improve on the training set but degrades on the validation set. This is usually
due to the model not generalizing, and instead memorizing the desired outputs
for the training set.

Using a neural
network to fit the data

This chapter covers

= Nonlinear activation functions as the key
difference compared with linear models

= Working with PyTorch’s nn module
= Solving a linear-fit problem with a neural network

So far, we’ve taken a close look at how a linear model can learn and how to make
that happen in PyTorch. We’ve focused on a very simple regression problem that
used a linear model with only one input and one output. Such a simple example
allowed us to dissect the mechanics of a model that learns, without getting overly
distracted by the implementation of the model itself. As we saw in the overview dia-
gram in chapter 5, figure 5.2 (repeated here as figure 6.1), the exact details of a
model are not needed to understand the high-level process that trains the model.
Backpropagating errors to parameters and then updating those parameters by tak-
ing the gradient with respect to the loss is the same no matter what the underlying
model is.

141

142

6.1

CHAPTER 6 Using a neural network to fit the data

THE LEARNING PROCESS

El

a DESIRED OUTPUTS

"
S [(BROUND TRUTH)
1 "0

L,

FOR\NARD

i d
U
£ 1 1‘ oL

CHANGE WEIGHTS To
DECREASE ERRORS ¢— ERRORS (LOSS FUNCTION)
ITERATE

BACKWARD

%% 5 %L—Elg VALIDATION

Figure 6.1 Our mental model of the learning process, as implemented in chapter 5

In this chapter, we will make some changes to our model architecture: we’re going to
implement a full artificial neural network to solve our temperature-conversion
problem. We’ll continue using our training loop from the last chapter, along with our
Fahrenheit-to-Celsius samples split into training and validation sets. We could start to
use a quadratic model: rewriting model as a quadratic function of its input (for
example,y = a * x**2 + b * x + c). Since such a model would be differentiable,
PyTorch would take care of computing gradients, and the training loop would work as
usual. That wouldn’t be too interesting for us, though, because we would still be fixing
the shape of the function.

This is the chapter where we begin to hook together the foundational work we’ve
putin and the PyTorch features you’ll be using day in and day out as you work on your
projects. You’ll gain an understanding of what’s going on underneath the porcelain of
the PyTorch API, rather than it just being so much black magic. Before we get into the
implementation of our new model, though, let’s cover what we mean by artificial neu-
ral network.

Artificial neurons

At the core of deep learning are neural networks: mathematical entities capable of
representing complicated functions through a composition of simpler functions. The
term neural network is obviously suggestive of a link to the way our brain works. As a

Artificial neurons 143

matter of fact, although the initial models were inspired by neuroscience,' modern
artificial neural networks bear only a slight resemblance to the mechanisms of neu-
rons in the brain. It seems likely that both artificial and physiological neural networks
use vaguely similar mathematical strategies for approximating complicated functions
because that family of strategies works very effectively.

NOTE We are going to drop the artificial and refer to these constructs as just
neural networks from here forward.

The basic building block of these complicated functions is the neuron, as illustrated in
figure 6.2. At its core, it is nothing but a linear transformation of the input (for exam-
ple, multiplying the input by a number [the weight] and adding a constant [the bias])
followed by the application of a fixed nonlinear function (referred to as the activation
Jfunction).

Mathematically, we can write this out as o= f{lw * x + b), with x as our input, w our
weight or scaling factor, and b as our bias or offset. fis our activation function, set to
the hyperbolic tangent, or tanh function here. In general, x and, hence, o can be sim-
ple scalars, or vector-valued (meaning holding many scalar values); and similarly, w

THE "NELRON”

——T‘.— LEARNED PARAMETERS
~Tanh (b)

\$/
LINEAR TRANSFORMATION
NONLINEAR FUNCTION (ACTIVATION)

LEARNED
¥
w=2 w L)
b=0
— 2x4+0 =
S 2)((\4.(0:
—> Zx(10)+ 0=

Figure 6.2 An artificial neuron: a linear transformation enclosed in a nonlinear function

! See F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the
Brain,” Psychological Review 65(6), 386—408 (1958), https://pubmed.ncbi.nlm.nih.gov/13602029/.

https://pubmed.ncbi.nlm.nih.gov/13602029/

144

6.1.1

6.1.2

CHAPTER 6 Using a neural network to fit the data

can be a single scalar or matrix, while & is a scalar or vector (the dimensionality of the
inputs and weights must match, however). In the latter case, the previous expression is
referred to as a layer of neurons, since it represents many neurons via the multidimen-
sional weights and biases.

Composing a multilayer network
A multilayer neural network, as represented in figure 6.3, is made up of a composition

of functions like those we just discussed

= f(w_0 * x + b_0)

X
b'd = f(w_1 * x 1 + b_1)

1
2
vy = f(w.n * xn + b_n)

where the output of a layer of neurons is used as an input for the following layer.
Remember that w_0 here is a matrix, and x is a vector! Using a vector allows w_0 to
hold an entire layer of neurons, not just a single weight.

A NEURAL NETWORK

LEARNED PARAMETERS

NEURON

Fm——— ———

_——— — — —

Figure 6.3 A neural network
with three layers

Understanding the error function

An important difference between our earlier linear model and what we’ll actually be
using for deep learning is the shape of the error function. Our linear model and
error-squared loss function had a convex error curve with a singular, clearly defined
minimum. If we were to use other methods, we could solve for the parameters mini-
mizing the error function automatically and definitively. That means that our parame-
ter updates were attempting to estimate that singular correct answer as best they could.

6.1.3

Artificial neurons 145

Neural networks do not have that same property of a convex error surface, even
when using the same error-squared loss function! There’s no single right answer for
each parameter we’re attempting to approximate. Instead, we are trying to get all of
the parameters, when acting in concert, to produce a useful output. Since that useful
output is only going to approximate the truth, there will be some level of imperfection.
Where and how imperfections manifest is somewhat arbitrary, and by implication the
parameters that control the output (and, hence, the imperfections) are somewhat
arbitrary as well. This results in neural network training looking very much like
parameter estimation from a mechanical perspective, but we must remember that the
theoretical underpinnings are quite different.

A big part of the reason neural networks have non-convex error surfaces is due to
the activation function. The ability of an ensemble of neurons to approximate a very
wide range of useful functions depends on the combination of the linear and nonlin-
ear behavior inherent to each neuron.

All we need is activation

As we have seen, the simplest unit in (deep) neural networks is a linear operation
(scaling + offset) followed by an activation function. We already had our linear opera-
tion in our latest model—the linear operation was the entire model. The activation
function plays two important roles:

In the inner parts of the model, it allows the output function to have different
slopes at different values—something a linear function by definition cannot do.
By trickily composing these differently sloped parts for many outputs, neural
networks can approximate arbitrary functions, as we will see in section 6.1.6.2
At the last layer of the network, it has the role of concentrating the outputs of
the preceding linear operation into a given range.

Let’s talk about what the second point means. Pretend that we’re assigning a “good
doggo” score to images. Pictures of retrievers and spaniels should have a high score,
while images of airplanes and garbage trucks should have a low score. Bear pictures
should have a lowish score, too, although higher than garbage trucks.

The problem is, we have to define a “high score”: we’ve got the entire range of
float32 towork with, and that means we can go pretty high. Even if we say “it’sa 10-point
scale,” there’s still the issue that sometimes our model is going to produce a score of 11
out of 10. Remember that under the hood, it’s all sums of (w*x+b) matrix multiplica-
tions, and those won’t naturally limit themselves to a specific range of outputs.

? For an intuitive appreciation of this universal approximation property, you can pick a function from figure
6.5 and then build a building-block function that is almost zero in most parts and positive around x = 0 from
scaled (including multiplied by negative numbers) and translated copies of the activation function. With
scaled, translated, and dilated (squeezed along the X-axis) copies of this building-block function, you can then
approximate any (continuous) function. In figure 6.6 the function in the middle row to the right could be
such a building block. Michael Nielsen has an interactive demonstration in his online book Neural Networks
and Deep Learning at http://mng.bz/Mdon.

http://mng.bz/Mdon

146

CHAPTER 6 Using a neural network to fit the data

CAPPING THE OUTPUT RANGE

We want to firmly constrain the output of our linear operation to a specific range so
that the consumer of this output doesn’t have to handle numerical inputs of puppies
at 12/10, bears at —10, and garbage trucks at —1,000.

One possibility is to just cap the output values: anything below 0 is set to 0, and any-
thing above 10issetto 10. That’s a simple activation function called torch.nn.Hardtanh
(https://pytorch.org/docs/stable/nn.html#hardtanh, but note that the default range
is =1 to +1).

COMPRESSING THE OUTPUT RANGE

Another family of functions that work well is torch.nn.Sigmoid, which includes 1 /
(1 + e ** -x), torch.tanh, and others that we’ll see in a moment. These functions
have a curve that asymptotically approaches 0 or —1 as x goes to negative infinity,
approaches 1 as x increases, and have a mostly constant slope at x == (0. Conceptually,
functions shaped this way work well because there’s an area in the middle of our lin-
ear function’s output that our neuron (which, again, is just a linear function followed
by an activation) will be sensitive to, while everything else gets lumped next to the
boundary values. As we can see in figure 6.4, our garbage truck gets a score of —=0.97,
while bears and foxes and wolves end up somewhere in the —0.3 to 0.3 range.

GRIZZLY
REAR

-l

OUNDER- SENSITIVE OVER-
SATURATED SATURATED

Figure 6.4 Dogs, bears, and garbage trucks being mapped to how dog-like they are
via the tanh activation function

https://pytorch.org/docs/stable/nn.html#hardtanh

6.1.4

Artificial neurons 147

This results in garbage trucks being flagged as “not dogs,” our good dog mapping to
“clearly a dog,” and our bear ending up somewhere in the middle. In code, we can see
the exact values:

>>> import math

>>> math.tanh(-2.2) <+—— Garbage truck
-0.9757431300314515

>>> math.tanh(0.1) <— Bear
0.09966799462495582

>>> math.tanh(2.5) <+— Good doggo

0.9866142981514303

With the bear in the sensitive range, small changes to the bear will result in a notice-
able change to the result. For example, we could switch from a grizzly to a polar bear
(which has a vaguely more traditionally canine face) and see a jump up the Y-axis as
we slide toward the “very much a dog” end of the graph. Conversely, a koala bear
would register as less dog-like, and we would see a drop in the activated output. There
isn’t much we could do to the garbage truck to make it register as dog-like, though:
even with drastic changes, we might only see a shift from —0.97 to —0.8 or so.

More activation functions

There are quite a few activation functions, some of which are shown in figure 6.5. In
the first column, we see the smooth functions Tanh and Softplus, while the second
column has “hard” versions of the activation functions to their left: Hardtanh and
ReLU. ReLU (for rectified linear unit) deserves special note, as it is currently considered

TANH HARDTANH SIGMOID
3 31 3
2 21 2
\ \ \
L
0 % 01
- -4 -l
-2 -2 -2
-3 -3 -3
P R E R E R
SOFTPLUS RELL LEAKYRELL
3 31 3
2 21 2
11 \1 \
01 / 0 Ol —————
-1 -1 -\
-2 1 -2 -2
-3 -3 -3
-3 -2 -l [| 2 3 -3 -2 -l (% \ 2 3 -3 -2 -l (% \ 2 3

Figure 6.5 A collection of common and not-so-common activation functions

148

6.1.5

CHAPTER 6 Using a neural network to fit the data

one of the best-performing general activation functions; many state-of-the-art results
have used it. The Sigmoid activation function, also known as the logistic function, was
widely used in early deep learning work but has since fallen out of common use
except where we explicitly want to move to the 0...1 range: for example, when the out-
put should be a probability. Finally, the LeakyReLU function modifies the standard
ReLU to have a small positive slope, rather than being strictly zero for negative inputs
(typically this slope is 0.01, but it’s shown here with slope 0.1 for clarity).

Choosing the best activation function

Activation functions are curious, because with such a wide variety of proven successful
ones (many more than shown in figure 6.5), it’s clear that there are few, if any, strict
requirements. As such, we’re going to discuss some generalities about activation func-
tions that can probably be trivially disproved in the specific. That said, by definition,’
activation functions

Are nonlinear. Repeated applications of (w*x+b) without an activation function
results in a function of the same (affine linear) form. The nonlinearity allows
the overall network to approximate more complex functions.

Are differentiable, so that gradients can be computed through them. Point dis-
continuities, as we can see in Hardtanh or ReLU, are fine.

Without these characteristics, the network either falls back to being a linear model or
becomes difficult to train.
The following are true for the functions:

They have at least one sensitive range, where nontrivial changes to the input
result in a corresponding nontrivial change to the output. This is needed for
training.

Many of them have an insensitive (or saturated) range, where changes to the
input result in little or no change to the output.

By way of example, the Hardtanh function could easily be used to make piecewise-linear
approximations of a function by combining the sensitive range with different weights
and biases on the input.

Often (but far from universally so), the activation function will have at least one of
these:

Alower bound that is approached (or met) as the input goes to negative infinity
A similar-but-inverse upper bound for positive infinity

Thinking of what we know about how backpropagation works, we can figure out that
the errors will propagate backward through the activation more effectively when the
inputs are in the response range, while errors will not greatly affect neurons for which

¥ Of course, even these statements aren’t always true; see Jakob Foerster, “Nonlinear Computation in Deep Lin-
ear Networks,” OpenAl, 2019, http://mng.bz/gygE.

http://mng.bz/gygE

6.1.6

Artificial neurons 149

the input is saturated (since the gradient will be close to zero, due to the flat area
around the output).

Put together, all this results in a pretty powerful mechanism: we’re saying that in a
network built out of linear + activation units, when different inputs are presented to
the network, (a) different units will respond in different ranges for the same inputs,
and (b) the errors associated with those inputs will primarily affect the neurons oper-
ating in the sensitive range, leaving other units more or less unaffected by the learn-
ing process. In addition, thanks to the fact that derivatives of the activation with
respect to its inputs are often close to 1 in the sensitive range, estimating the parame-
ters of the linear transformation through gradient descent for the units that operate
in that range will look a lot like the linear fit we have seen previously.

We are starting to get a deeper intuition for how joining many linear + activation
units in parallel and stacking them one after the other leads us to a mathematical
object that is capable of approximating complicated functions. Different combina-
tions of units will respond to inputs in different ranges, and those parameters for
those units are relatively easy to optimize through gradient descent, since learning will
behave a lot like that of a linear function until the output saturates.

What learning means for a neural network

Building models out of stacks of linear transformations followed by differentiable acti-
vations leads to models that can approximate highly nonlinear processes and whose
parameters we can estimate surprisingly well through gradient descent. This remains
true even when dealing with models with millions of parameters. What makes using
deep neural networks so attractive is that it saves us from worrying too much about the
exact function that represents our data—whether it is quadratic, piecewise polyno-
mial, or something else. With a deep neural network model, we have a universal
approximator and a method to estimate its parameters. This approximator can be cus-
tomized to our needs, in terms of model capacity and its ability to model complicated
input/output relationships, just by composing simple building blocks. We can see
some examples of this in figure 6.6.

The four upper-left graphs show four neurons—A, B, C, and D—each with its own
(arbitrarily chosen) weight and bias. Each neuron uses the Tanh activation function
with a min of -1 and a max of 1. The varied weights and biases move the center point
and change how drastically the transition from min to max happens, but they clearly
all have the same general shape. The columns to the right of those show both pairs of
neurons added together (A + B and then C + D). Here, we start to see some interest-
ing properties that mimic a single layer of neurons. A + B shows a slight S curve, with
the extremes approaching 0, but both a positive bump and a negative bump in the
middle. Conversely, C + D has only a large positive bump, which peaks at a higher
value than our single-neuron max of 1.

In the third row, we begin to compose our neurons as they would be in a two-layer net-
work. Both C(A + B) and D(A + B) have the same positive and negative bumps that A+ B
shows, but the positive peak is more subtle. The composition of C(A + B) + D(A + B)

CHAPTER 6 Using a neural network to fit the data

A: TANH(-2 * X -1.25) 8: TANH(| ¥ X + 0.75) A+B

. ﬂ | '
01 01 /) °

g —]
~{ —_— - _/ -1
-2 -2 -24
-34 -3 -3
-3 -2 -l (% \ 2 3 -3 -2 -l % \ 2 3 -3 -2 -l % | 2z 3
C* TANH(Y * X +1.0) D TANH(-3 * X - |.B) C+D
3 39 3
2 21 2

-1 -1 L -1
\ 2 3

-2 -2 -2
-31 -3 -3
-3 -2 - 0 |\ 2 3 -3 -2 - 0 -3 -2 - 0 | 2 3
C(A +B) D(A +8) C(A + B) + D(A +R)
3 3 3]
2 2 2
\ _/—\ 1 \/— 1] 3
o 01 01
-1 -1 -1
-21 -2 -2
-31 -3 -31
-3 -2 -l o \ 2 3 -8 -2 -l o \ 2 3 -3 -2 -l (o] | 2 3

Figure 6.6 Composing multiple linear units and tanh activation functions to produce nonlinear
outputs

shows a new property: two clearly negative bumps, and possibly a very subtle second pos-
itive peak as well, to the left of the main area of interest. All this with only four neurons
in two layers!

Again, these neurons’ parameters were chosen only to have a visually interesting
result. Training consists of finding acceptable values for these weights and biases so
that the resulting network correctly carries out a task, such as predicting likely tem-
peratures given geographic coordinates and time of the year. By carrying out a task suc-
cessfully, we mean obtaining a correct output on unseen data produced by the same
data-generating process used for training data. A successfully trained network,
through the values of its weights and biases, will capture the inherent structure of the
data in the form of meaningful numerical representations that work correctly for pre-
viously unseen data.

6.2

The PyTorch nn module 151

Let’s take another step in our realization of the mechanics of learning: deep neural
networks give us the ability to approximate highly nonlinear phenomena without hav-
ing an explicit model for them. Instead, starting from a generic, untrained model, we
specialize it on a task by providing it with a set of inputs and outputs and a loss function
from which to backpropagate. Specializing a generic model to a task using examples is
what we refer to as learning, because the model wasn’t built with that specific task in
mind—no rules describing how that task worked were encoded in the model.

For our thermometer example, we assumed that both thermometers measured
temperatures linearly. That assumption is where we implicitly encoded a rule for our
task: we hardcoded the shape of our input/output function; we couldn’t have approx-
imated anything other than data points sitting around a line. As the dimensionality of
a problem grows (that is, many inputs to many outputs) and input/output relation-
ships get complicated, assuming a shape for the input/output function is unlikely to
work. The job of a physicist or an applied mathematician is often to come up with a
functional description of a phenomenon from first principles, so that we can estimate
the unknown parameters from measurements and get an accurate model of the
world. Deep neural networks, on the other hand, are families of functions that have
the ability to approximate a wide range of input/output relationships without neces-
sarily requiring us to come up with an explanatory model of a phenomenon. In a way,
we’re renouncing an explanation in exchange for the possibility of tackling increas-
ingly complicated problems. In another way, we sometimes lack the ability, informa-
tion, or computational resources to build an explicit model of what we’re presented
with, so data-driven methods are our only way forward.

The PyTorch nhn module

All this talking about neural networks is probably making you really curious about
building one from scratch with PyTorch. Our first step will be to replace our linear
model with a neural network unit. This will be a somewhat useless step backward from
a correctness perspective, since we’ve already verified that our calibration only
required a linear function, but it will still be instrumental for starting on a sufficiently
simple problem and scaling up later.

PyTorch has a whole submodule dedicated to neural networks, called torch.nn. It
contains the building blocks needed to create all sorts of neural network architec-
tures. Those building blocks are called modules in PyTorch parlance (such building
blocks are often referred to as layers in other frameworks). A PyTorch module is a
Python class deriving from the nn.Module base class. A module can have one or more
Parameter instances as attributes, which are tensors whose values are optimized
during the training process (think w and b in our linear model). A module can also
have one or more submodules (subclasses of nn.Module) as attributes, and it will be
able to track their parameters as well.

152

6.2.1

CHAPTER 6 Using a neural network to fit the data

NOTE The submodules must be top-level altributes, not buried inside 1ist or
dict instances! Otherwise, the optimizer will not be able to locate the sub-
modules (and, hence, their parameters). For situations where your model
requires a list or dict of submodules, PyTorch provides nn.ModuleList and
nn.ModuleDict.

Unsurprisingly, we can find a subclass of nn.Module called nn.Linear, which applies
an affine transformation to its input (via the parameter attributes weight and bias)
and is equivalent to what we implemented earlier in our thermometer experiments.
We’ll now start precisely where we left off and convert our previous code to a form
that uses nn.

Using __call__ rather than forward

All PyTorch-provided subclasses of nn.Module have their __call__ method defined.
This allows us to instantiate an nn.Linear and call it as if it was a function, like so
(code/plch6/1_neural_networks.ipynb):

In[5]:
import torch.nn as nn
We’ll look into the constructor

linear_model = nn.Linear (1, 1) arguments in a moment.

linear_model (t_un_val)

Out[5]:
tensor ([[0.6018],
[0.2877]1], grad_fn=<AddmmBackward>)

Calling an instance of nn.Module with a set of arguments ends up calling a method
named forward with the same arguments. The forward method is what executes the
forward computation, while __call__ does other rather important chores before and
after calling forward. So, it is technically possible to call forward directly, and it will
produce the same output as __call__, but this should not be done from user code:

v = model (x) <— Correct!
vy = model. forward(x)

Silent error. Don’t do it!

Here’s the implementation of Module._call_ (we left out the bits related to the JIT
and made some simplifications for clarity; torch/nn/modules/module.py, line 483,
class: Module):

def _ _call_ (self, *input, **kwargs):
for hook in self._forward_pre_hooks.values() :
hook (self, input)

result = self.forward(*input, **kwargs)

for hook in self._forward_hooks.values() :
hook_result = hook(self, input, result)

6.2.2

The PyTorch nn module 153

for hook in self._backward_hooks.values() :
#

return result

As we can see, there are a lot of hooks that won’t get called properly if we just use
.forward(..) directly.

Returning to the linear model

Back to our linear model. The constructor to nn.Linear accepts three arguments: the
number of input features, the number of output features, and whether the linear
model includes a bias or not (defaulting to True, here):

In[5]:
import torch.nn as nn

The arguments are input size, output
linear model = nn.Linear (1, 1) size, and bias defaulting to True.

linear_model (t_un_val)

Out[5]:
tensor ([[0.6018],
[0.2877]1], grad_fn=<AddmmBackward>)

The number of features in our case just refers to the size of the input and the output
tensor for the module, so 1 and 1. If we used both temperature and barometric pres-
sure as input, for instance, we would have two features in input and one feature in out-
put. As we will see, for more complex models with several intermediate modules, the
number of features will be associated with the capacity of the model.

We have an instance of nn.Linear with one input and one output feature. That
only requires one weight and one bias:

In(6]:
linear_model .weight

out[6]:

Parameter containing:

tensor ([[-0.0674]], requires_grad=True)
In[7]:

linear_model .bias

Out[7]:
Parameter containing:
tensor ([0.7488], requires_grad=True)

154

CHAPTER 6 Using a neural network to fit the data

We can call the module with some input:

In[8]:
x = torch.ones (1)
linear_model (x)

out[8]:
tensor ([0.6814], grad_fn=<AddBackward0>)

Although PyTorch lets us get away with it, we don’t actually provide an input with the
right dimensionality. We have a model that takes one input and produces one output,
but PyTorch nn.Module and its subclasses are designed to do so on multiple samples at
the same time. To accommodate multiple samples, modules expect the zeroth dimen-
sion of the input to be the number of samples in the batch. We encountered this con-
cept in chapter 4, when we learned how to arrange real-world data into tensors.

BATCHING INPUTS

Any module in nn is written to produce outputs for a baich of multiple inputs at the
same time. Thus, assuming we need to run nn.Linear on 10 samples, we can create an
input tensor of size B x Nin, where Bis the size of the batch and Nin is the number of
input features, and run it once through the model. For example:

In[9]:
x = torch.ones (10, 1)
linear_model (x)

Oout[9]:

tensor ([[0.6814],
[0.68147,
[0.6814]7,
[0.68147,
[0.68147,
[0.6814]7,
[0.68147,
[0.68147,
[0.6814]7,
[0.6814]], grad_fn=<AddmmBackward>)

Let’s dig into what’s going on here, with figure 6.7 showing a similar situation with
batched image data. Our input is B x C x H x Wwith a batch size of 3 (say, images
of a dog, a bird, and then a car), three channel dimensions (red, green, and blue),
and an unspecified number of pixels for height and width. As we can see, the out-
put is a tensor of size B x Nout, where Nout is the number of output features: four, in
this case.

The PyTorch nn module 155

HEIGHT

1

[N

[—WT.DTH —

>
A BATCH = 3
S B xC H W
cﬁ&\\

- m Figure 6.7 Three
" m:ﬂ RGB images batched
L= : together and fed into
D:m a neural network. The

output is a batch of
three vectors of size 4.

8=3

OPTIMIZING BATCHES

The reason we want to do this batching is multifaceted. One big motivation is to make
sure the computation we’re asking for is big enough to saturate the computing
resources we're using to perform the computation. GPUs in particular are highly par-
allelized, so a single input on a small model will leave most of the computing units idle.
By providing batches of inputs, the calculation can be spread across the otherwise-idle
units, which means the batched results come back just as quickly as a single result
would. Another benefit is that some advanced models use statistical information from
the entire batch, and those statistics get better with larger batch sizes.

Back to our thermometer data, t_u and t_c were two 1D tensors of size B. Thanks
to broadcasting, we could write our linear model asw * x + b, where wand b were
two scalar parameters. This worked because we had a single input feature: if we had
two, we would need to add an extra dimension to turn that 1D tensor into a matrix
with samples in the rows and features in the columns.

That’s exactly what we need to do to switch to using nn.Linear. We reshape our B
inputs to B x Nin, where Ninis 1. That is easily done with unsqueeze:

In[2]:

t_c=[0.5, 14.0, 15.0, 28.0, 11.0, 8.0, 3.0, -4.0, 6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
t_c = torch.tensor(t_c) .unsqueeze(l . . .

- {t_c) .unsqueeze (1) Adds the extra dimension at axis 1
t_u = torch.tensor (t_u) .unsqueeze(l)

t_u.shape

out[2]:

torch.Size([11, 11)

156

CHAPTER 6 Using a neural network to fit the data

We’re done; let’s update our training code. First, we replace our handmade model
with nn.Linear (1,1), and then we need to pass the linear model parameters to the
optimizer:

In[10]: This is just a redefinition
linear_model = nn.Linear (1, 1) from earlier

optimizer = optim.SGD (

linear_model .parameters (), This method call
lr=le-2) replaces [params].

Earlier, it was our responsibility to create parameters and pass them as the first argu-
ment to optim.SGD. Now we can use the parameters method to ask any nn.Module for
a list of parameters owned by it or any of its submodules:

In[11]:
linear_model .parameters ()

Out[1l1l]:
<generator object Module.parameters at 0x7f94b4a8a750>

In[12]:
list(linear_model.parameters())

Oout[l2]:

[Parameter containing:

tensor ([[0.7398]], requires_grad=True), Parameter containing:
tensor ([0.7974], requires_grad=True)]

This call recurses into submodules defined in the module’s init constructor and
returns a flat list of all parameters encountered, so that we can conveniently pass it to
the optimizer constructor as we did previously.

We can already figure out what happens in the training loop. The optimizer is pro-
vided with a list of tensors that were defined with requires_grad = True—all Parameters
are defined this way by definition, since they need to be optimized by gradient descent.
When training_loss.backward () is called, gradis accumulated on the leaf nodes of the
graph, which are precisely the parameters that were passed to the optimizer.

At this point, the SGD optimizer has everything it needs. When optimizer.step()
is called, it will iterate through each Parameter and change it by an amount propor-
tional to what is stored in its grad attribute. Pretty clean design.

Let’s take a look a the training loop now:

In[13]:
def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val,
t_c_train, t_c_val):
for epoch in range(l, n_epochs + 1):

t_p_train = model (t_u_train) .
The model is now

passed in, instead of
the individual params.

loss_train = loss_fn(t_p_train, t_c_train)

t_p_val = model (t_u_val)

The PyTorch nn module 157

loss_val = loss_fn(t_p_val, t_c_val)

optimizer.zero_grad()

toss_train.backward() The loss function is also passed
optimizer.step() in. We’ll use it in a moment.

if epoch == 1 or epoch % 1000 == O0:
print (f"Epoch {epoch}, Training loss {loss_train.item():.4f},"
f" vValidation loss {loss_val.item():.4f}")

It hasn’t changed practically at all, except that now we don’t pass params explicitly to
model since the model itself holds its Parameters internally.

There’s one last bit that we can leverage from torch.nn: the loss. Indeed, nn comes
with several common loss functions, among them nn.MSELoss (MSE stands for Mean
Square Error), which is exactly what we defined earlier as our loss_fn. Loss functions
in nn are still subclasses of nn.Module, so we will create an instance and call it as a
function. In our case, we get rid of the handwritten loss_fn and replace it:

In[15]:
linear_model = nn.Linear (1, 1)
optimizer = optim.SGD(linear_model.parameters(), lr=le-2)

training_loop (
n_epochs = 3000,
optimizer = optimizer,
model = linear model, We are no longer using our hand-
loss fn = nn.MSELoss (), written loss function from earlier.
t_u_train = t_un_train,
t_u_val = t_un_val,
t_c_train = t_c_train,
t_c_val = t_c_val)

print ()
print (linear_model .weight)
print (linear_model .bias)

Out[15]:

Epoch 1, Training loss 134.9599, Validation loss 183.1707
Epoch 1000, Training loss 4.8053, Validation loss 4.7307
Epoch 2000, Training loss 3.0285, Validation loss 3.0889
Epoch 3000, Training loss 2.8569, Validation loss 3.9105

Parameter containing:

tensor ([[5.4319]], requires_grad=True)
Parameter containing:
tensor ([-17.9693], requires_grad=True)

Everything else input into our training loop stays the same. Even our results remain
the same as before. Of course, getting the same results is expected, as a difference
would imply a bug in one of the two implementations.

158

6.3

6.3.1

CHAPTER 6 Using a neural network to fit the data

Finally a neural network

It’s been a long journey—there has been a lot to explore for these 20-something lines
of code we require to define and train a model. Hopefully by now the magic involved
in training has vanished and left room for the mechanics. What we learned so far will
allow us to own the code we write instead of merely poking at a black box when things
get more complicated.

There’s one last step left to take: replacing our linear model with a neural network
as our approximating function. We said earlier that using a neural network will not
result in a higher-quality model, since the process underlying our calibration problem
was fundamentally linear. However, it’s good to make the leap from linear to neural
network in a controlled environment so we won'’t feel lost later.

Replacing the linear model
We are going to keep everything else fixed, including the loss function, and only rede-
fine model. Let’s build the simplest possible neural network: a linear module, followed
by an activation function, feeding into another linear module. The first linear + activa-
tion layer is commonly referred to as a hidden layer for historical reasons, since its out-
puts are not observed directly but fed into the output layer. While the input and output
of the model are both of size 1 (they have one input and one output feature), the size
of the output of the first linear module is usually larger than 1. Recalling our earlier
explanation of the role of activations, this can lead different units to respond to different
ranges of the input, which increases the capacity of our model. The last linear layer will
take the output of activations and combine them linearly to produce the output value.
There is no standard way to depict neural networks. Figure 6.8 shows two ways that
seem to be somewhat prototypical: the left side shows how our network might be
depicted in basic introductions, whereas a style similar to that on the right is often
used in the more advanced literature and research papers. It is common to make dia-
gram blocks that roughly correspond to the neural network modules PyTorch offers
(though sometimes things like the Tanh activation layer are not explicitly shown).
Note that one somewhat subtle difference between the two is that the graph on the
left has the inputs and (intermediate) results in the circles as the main elements. On
the right, the computational steps are more prominent.

&

ouTPUT (Id)

%O@\ LINEAR (1d)
O ﬁo TANH
Figure 6.8 Our simplest neural

LINEAR (12d)
0
INPUT (1d)
network in two views. Left: beginner’s

INPUT HIDDEN oUTPUT version. Right: higher-level version.

I9I9I9

®

6.3.2

Finally a neural network 159

nn provides a simple way to concatenate modules through the nn.Sequential

container:
In[16]: We chose 13 arbitrarily. We wanted a number
seq model = nn.Sequential (that was a different size from the other
nn.Linear (1, 13), tensor shapes we have floating around.
nn.Tanh (),
del nn.Linear (13, 1)) This 13 must match
seqmode the first size, however.
Out[l6e]:
Sequential (
(0): Linear (in_features=1, out_features=13, bias=True)
(1) : Tanh()
(2): Linear (in_features=13, out_features=1, bias=True)

The end result is a model that takes the inputs expected by the first module specified
as an argument of nn.Sequential, passes intermediate outputs to subsequent mod-
ules, and produces the output returned by the last module. The model fans out from
1 input feature to 13 hidden features, passes them through a tanh activation, and lin-
early combines the resulting 13 numbers into 1 output feature.

Inspecting the parameters

Calling model .parameters () will collect weight and bias from both the first and sec-
ond linear modules. It’s instructive to inspect the parameters in this case by printing
their shapes:

In[17]:
[param.shape for param in seq _model.parameters ()]

Out[17]:
[torch.Size([13, 1]), torch.Size([13]), torch.Size([1l, 13]), torch.Size([1l])]

These are the tensors that the optimizer will get. Again, after we call model . backward (),
all parameters are populated with their grad, and the optimizer then updates their val-
ues accordingly during the optimizer.step () call. Not that different from our previous
linear model, eh? After all, they’re both differentiable models that can be trained using
gradient descent.

A few notes on parameters of nn.Modules. When inspecting parameters of a model
made up of several submodules, it is handy to be able to identify parameters by name.
There’s a method for that, called named_parameters:

In[18]:
for name, param in seq model.named_parameters() :
print (name, param.shape)

Out[18]:
0.weight torch.Size([13, 1])

160

CHAPTER 6 Using a neural network to fit the data

0.bias torch.Size([13])
2.weight torch.Size([1, 131)
2.bias torch.Size([1])

The name of each module in Sequential is just the ordinal with which the module
appears in the arguments. Interestingly, Sequential also accepts an OrderedDict,* in
which we can name each module passed to Sequential:

In[19]:
from collections import OrderedDict

seq_model = nn.Sequential (OrderedDict ([
('hidden_linear', nn.Linear (1, 8)),
('hidden_activation', nn.Tanh()),
('output_linear', nn.Linear (8, 1))
1))

seqg _model

Out[19]:

Sequential (
(hidden_linear) : Linear (in_features=1, out_features=8, bias=True)
(hidden_activation): Tanh()
(output_linear): Linear (in_features=8, out_features=1, bias=True)

This allows us to get more explanatory names for submodules:

In[20]:
for name, param in seq model.named_parameters () :
print (name, param.shape)

Out[20]:

hidden_linear.weight torch.Size([8, 11)
hidden_linear.bias torch.Size([8])
output_linear.weight torch.Size([1l, 8])
output_linear.bias torch.Size([1])

This is more descriptive; but it does not give us more flexibility in the flow of data
through the network, which remains a purely sequential pass-through—the
nn.Sequential is very aptly named. We will see how to take full control of the process-
ing of input data by subclassing nn.Module ourselves in chapter 8.

We can also access a particular Parameter by using submodules as attributes:

In[21]:
seqg_model .output_linear.bias

Oout[21]:
Parameter containing:
tensor ([-0.0173], requires_grad=True)

* Not all versions of Python specify the iteration order for dict, so we’re using OrderedDict here to ensure
the ordering of the layers and emphasize that the order of the layers matters.

6.3.3

Finally a neural network 161

This is useful for inspecting parameters or their gradients: for instance, to monitor
gradients during training, as we did at the beginning of this chapter. Say we want to
print out the gradients of weight of the linear portion of the hidden layer. We can run
the training loop for the new neural network model and then look at the resulting
gradients after the last epoch:

In[22]:

optimizer = optim.SGD(seqg model.parameters (), lr=le-3) VV€vedroppedthe
o learning rate a bit to

training loop(help with stability.
n_epochs = 5000,
optimizer = optimizer,

model = seqg model,
loss_fn = nn.MSELoss (),
t_u_train = t_un_train,
t_u_val = t_un_val,
t_c_train = t_c_train,
t_c_val = t_c_val)

print ('output', seqg model (t_un_val))
print ('answer', t_c_val)
print ('hidden', seqg model.hidden_linear.weight.grad)

out[22]:
Epoch 1, Training loss 182.9724, Validation loss 231.8708

Epoch 1000, Training loss 6.6642, Validation loss 3.7330
Epoch 2000, Training loss 5.1502, Validation loss 0.1406
Epoch 3000, Training loss 2.9653, Validation loss 1.0005
Epoch 4000, Training loss 2.2839, Validation loss 1.6580
Epoch 5000, Training loss 2.1141, Validation loss 2.0215
output tensor ([[-1.9930],

[20.8729]], grad_fn=<AddmmBackward>)
answer tensor([[-4.],

[21.11)
hidden tensor([[0.0272],

[0.0139],

[0.1692]7,

[0.1735]7,

[-0.1697],

[0.1455]7,

[-0.0136],

[-0.0554]11)

Comparing to the linear model

We can also evaluate the model on all of the data and see how it differs from a line:

In[23]:
from matplotlib import pyplot as plt

t_range = torch.arange(20., 90.).unsqueeze(l)

fig = plt.figure(dpi=600)

162

6.4

6.5

CHAPTER 6 Using a neural network to fit the data

plt.xlabel ("Fahrenheit")
plt.ylabel ("Celsius")

plt.plot(t_u.numpy (), t_c.numpy(), 'o")
plt.plot(t_range.numpy (), seg model (0.1 * t_range).detach() .numpy(), 'c-")
plt.plot(t_u.numpy (), seqg model (0.1 * t_u).detach() .numpy (), 'kx')

The result is shown in figure 6.9. We can appreciate that the neural network has a ten-

dency to overfit, as we discussed in chapter 5, since it tries to chase the measurements,

including the noisy ones. Even our tiny neural network has too many parameters to fit

the few measurements we have. It doesn’t do a bad job, though, overall.

30 A

25

20 1

CELSILS

FARRENHETLT

Figure 6.9 The plot of our neural network model, with input data (circles) and
model output (Xs). The continuous line shows behavior between samples.

Conclusion

We’ve covered a lot in chapters 5 and 6, although we have been dealing with a very

simple problem. We dissected building differentiable models and training them using

gradient descent, first using raw autograd and then relying on nn. By now you should

have confidence in your understanding of what’s going on behind the scenes. Hope-

fully this taste of PyTorch has given you an appetite for more!

Exercises

Experiment with the number of hidden neurons in our simple neural network
model, as well as the learning rate.

What changes result in more linear output from the model?

Can you get the model to obviously overfit the data?

Summary 163

The third-hardest problem in physics is finding a proper wine to celebrate dis-
coveries. Load the wine data from chapter 4, and create a new model with the
appropriate number of input parameters.

How long does it take to train compared to the temperature data we have

been using?

Can you explain what factors contribute to the training times?

Can you get the loss to decrease while training on this dataset?

How would you go about graphing this dataset?

6.6 Summary

Neural networks can be automatically adapted to specialize themselves on the
problem at hand.

Neural networks allow easy access to the analytical derivatives of the loss with
respect to any parameter in the model, which makes evolving the parameters
very efficient. Thanks to its automated differentiation engine, PyTorch provides
such derivatives effortlessly.

Activation functions around linear transformations make neural networks capa-
ble of approximating highly nonlinear functions, at the same time keeping
them simple enough to optimize.

The nn module together with the tensor standard library provide all the build-
ing blocks for creating neural networks.

To recognize overfitting, it’s essential to maintain the training set of data points
separate from the validation set. There’s no one recipe to combat overfitting,
but getting more data, or more variability in the data, and resorting to simpler
models are good starts.

Anyone doing data science should be plotting data all the time.

Telling burds
Jrom awrplanes:
Learning from images

This chapter covers

= Building a feed-forward neural network
= [oading data using Datasets and DataLoaderS
= Understanding classification loss

The last chapter gave us the opportunity to dive into the inner mechanics of learn-
ing through gradient descent, and the facilities that PyTorch offers to build models
and optimize them. We did so using a simple regression model of one input and
one output, which allowed us to have everything in plain sight but admittedly was
only borderline exciting.

In this chapter, we’ll keep moving ahead with building our neural network foun-
dations. This time, we’ll turn our attention to images. Image recognition is argu-
ably the task that made the world realize the potential of deep learning.

164

A dataset of tiny images 165

We will approach a simple image recognition problem step by step, building from
a simple neural network like the one we defined in the last chapter. This time, instead
of a tiny dataset of numbers, we’ll use a more extensive dataset of tiny images. Let’s
download the dataset first and get to work preparing it for use.

7.1 A dataset of tiny images

There is nothing like an intuitive understanding of a subject, and there is nothing to
achieve that like working on simple data. One of the most basic datasets for image
recognition is the handwritten digitrecognition dataset known as MNIST. Here
we will use another dataset that is similarly simple and a bit more fun. It’s called
CIFAR-10, and, like its sibling CIFAR-100, it has been a computer vision classic for
a decade.

CIFAR-10 consists of 60,000 tiny 32 x 32 color (RGB) images, labeled with an inte-
ger corresponding to 1 of 10 classes: airplane (0), automobile (1), bird (2), cat (3),
deer (4), dog (5), frog (6), horse (7), ship (8), and truck (9).! Nowadays, CIFAR-10 is
considered too simple for developing or validating new research, but it serves our
learning purposes just fine. We will use the torchvision module to automatically
download the dataset and load it as a collection of PyTorch tensors. Figure 7.1 gives us
a taste of CIFAR-10.

AIRPLANE ALVTOMORILE

DoG

Figure 7.1 Image samples from all CIFAR-10 classes

DEER

! The images were collected and labeled by Krizhevsky, Nair, and Hinton of the Canadian Institute For
Advanced Research (CIFAR) and were drawn from a larger collection of unlabeled 32 x 32 color images: the
“80 million tiny images dataset” from the Computer Science and Artificial Intelligence Laboratory (CSAIL)
at the Massachusetts Institute of Technology.

166 CHAPTER 7 Telling birds from airplanes: Learning from images

7.1.1 Downloading CIFAR-10

As we anticipated, let’s import torchvision and use the datasets module to down-
load the CIFAR-10 data:

Instantiates a dataset for the training data;

TorchVision downloads the data if it is not present. With train=False, this gets us a
»

In[2]: dataset for the validation data,

from torchvision import datasets again downloading as necessary.

data_path = '../data-unversioned/plch7/'
cifarl0 = datasets.CIFAR10(data_path, train=True, download=True)
cifarl0_val = datasets.CIFAR10(data_path, train=False, download=True)

The first argument we provide to the CIFAR10 function is the location from which the
data will be downloaded; the second specifies whether we’re interested in the training
set or the validation set; and the third says whether we allow PyTorch to download the
data if it is not found in the location specified in the first argument.

Just like CIFARLO, the datasets submodule gives us precanned access to the most
popular computer vision datasets, such as MNIST, Fashion-MNIST, CIFAR-100,
SVHN, Coco, and Omniglot. In each case, the dataset is returned as a subclass of
torch.utils.data.Dataset. We can see that the method-resolution order of our
cifarl0 instance includes it as a base class:

In[4]:
type(cifarl0).__mro___

out[4]:
(torchvision.datasets.cifar.CIFARIO,
torchvision.datasets.vision.VisionDataset,
torch.utils.data.dataset.Dataset,

object)

7.1.2 The Dataset class

I’s a good time to discover what being a subclass of torch.utils.data.Dataset
means in practice. Looking at figure 7.2, we see what PyTorch Dataset is all about. It
is an object that is required to implement two methods: __len_ and _ getitem_ .
The former should return the number of items in the dataset; the latter should return
the item, consisting of a sample and its corresponding label (an integer index).?

In practice, when a Python object is equipped with the __len_ method, we can
pass it as an argument to the len Python built-in function:

In[5]:
len(cifarl0)

Out[5]:
50000

2 For some advanced uses, PyTorch also provides IterableDataset. This can be used in cases like datasets in
which random access to the data is prohibitively expensive or does not make sense: for example, because data
is generated on the fly.

A dataset of tiny images 167

Ag;:iL DATASET & HOW MANY ELEMENTS ?
— bt ™ lew (a-dahse‘l')
= lggo t & @R o
WOMAN Do HUMM & MAY T GET ITEM 4 2

ﬂ \@?ﬁ m -..Xﬂ' itewn._ (4 ;»-/3-39“3531‘[4]
DoG

Gt) “ "
HUMAN —/—‘—’A‘_A((&N HOMAN 3

)

Figure 7.2 Concept of a PyTorch Dataset object: it doesn’t necessarily hold the data, but it
provides uniform access to it through __len___and __getitem__.

Similarly, since the dataset is equipped with the __getitem__ method, we can use the
standard subscript for indexing tuples and lists to access individual items. Here, we get
a PIL (Python Imaging Library, the PIL package) image with our desired output—an
integer with the value 1, corresponding to “automobile”:

In[6]:
img, label = cifarl0[99]
img, label, class_names[label]

out[6]:

(<PIL.Image.Image image mode=RGB size=32x32 at 0x7FB383657390>,
1,

'automobile!')

So, the sample in the data.CIFARIO dataset is an instance of an RGB PIL image. We
can plot it right away:
In[7]:

plt.imshow (img)
plt.show()

This produces the output shown in figure 7.3. It’s a red car!®

¥ Ttdoesn’t translate well to print; you’ll have to take our word for it, or check it out in the eBook or the Jupyter
Notebook.

168

7.1.3

CHAPTER 7 Telling birds from airplanes: Learning from images

Figure 7.3 The 99th image from the
(9 1) 0 15 20 25 20 CIFAR-10 dataset: an automobile

Dataset transforms

That’s all very nice, but we’ll likely need a way to convert the PIL image to a PyTorch
tensor before we can do anything with it. That’s where torchvision.transforms
comes in. This module defines a set of composable, function-like objects that can be
passed as an argument to a torchvision dataset such as datasets.CIFARLO (..), and
that perform transformations on the data after it is loaded but before it is returned by
__getitem_ . We can see the list of available objects as follows:

In[8]:
from torchvision import transforms
dir (transforms)

Oout[8]:
['CenterCrop',
'ColorJitter',

'Normalize',
'Pad',
'RandomAffine',

'RandomResizedCrop',
'RandomRotation',
'RandomSizedCrop',

'TenCrop',
'ToPILImage’',
'ToTensor',

A dataset of tiny images 169

Among those transforms, we can spot ToTensor, which turns NumPy arrays and PIL
images to tensors. It also takes care to lay out the dimensions of the output tensor as
Cx Hx W (channel, height, width; just as we covered in chapter 4).

Let’s try out the ToTensor transform. Once instantiated, it can be called like a
function with the PIL image as the argument, returning a tensor as output:

In[9]:
from torchvision import transforms

to_tensor = transforms.ToTensor ()
img_t = to_tensor (img)
img_t.shape

Out[9]:
torch.Size([3, 32, 321)

The image has been turned into a 3 x 32 x 32 tensor and therefore a 3-channel (RGB)
32 x 32 image. Note that nothing has happened to label; it is still an integer.

As we anticipated, we can pass the transform directly as an argument to dataset
.CIFAR1O:

In[10]:
tensor_cifarl0 = datasets.CIFAR10(data_path, train=True, download=False,
transform=transforms.ToTensor ())

At this point, accessing an element of the dataset will return a tensor, rather than a
PIL image:

In[11]:
img_t, _ = tensor_cifar10[99]
type (img_t)

Out[11]:
torch.Tensor

As expected, the shape has the channel as the first dimension, while the scalar type is
float32:

In[12]:
img_t.shape, img_t.dtype

Oout[l1l2]:
(torch.Size([3, 32, 32]), torch.float32)

Whereas the values in the original PIL image ranged from 0 to 255 (8 bits per chan-
nel), the ToTensor transform turns the data into a 32-bit floating-point per channel,
scaling the values down from 0.0 to 1.0. Let’s verify that:

170

7.14

CHAPTER 7 Telling birds from airplanes: Learning from images

In[13]:
img_t.min(), img_t.max()
Out[13]:
(tensor(0.), tensor(l.))

And let’s verify that we’re getting the same image out:

In[14]:

plt.imshow(img t.permute(1l, 2, 0)) Changes the order of the axes from

plt.show() CXHXWtoHxXxWXC

out[14]:
<Figure size 432x288 with 1 Axes>

As we can see in figure 7.4, we get the same output as before.

Figure 7.4 We’ve seen
0 1) 0 \>) 20 25 20 this one already.

It checks. Note how we have to use permute to change the order of the axes from
CxH x W to Hx W x C to match what Matplotlib expects.

Normalizing data

Transforms are really handy because we can chain them using transforms.Compose,
and they can handle normalization and data augmentation transparently, directly in
the data loader. For instance, it’s good practice to normalize the dataset so that each
channel has zero mean and unitary standard deviation. We mentioned this in chapter
4, but now, after going through chapter 5, we also have an intuition for why: by choosing
activation functions that are linear around 0 plus or minus 1 (or 2), keeping the data
in the same range means it’s more likely that neurons have nonzero gradients and,

A dataset of tiny images 171

hence, will learn sooner. Also, normalizing each channel so that it has the same
distribution will ensure that channel information can be mixed and updated through
gradient descent using the same learning rate. This is just like the situation in section
5.4.4 when we rescaled the weight to be of the same magnitude as the bias in our
temperature-conversion model.

In order to make it so that each channel has zero mean and unitary standard devi-
ation, we can compute the mean value and the standard deviation of each channel
across the dataset and apply the following transform: v_n[c] = (v[c] - meanlc]) /
stdev[c]. This is what transforms.Normalize does. The values of mean and stdev
must be computed offline (they are not computed by the transform). Let’s compute
them for the CIFAR-10 training set.

Since the CIFAR-10 dataset is small, we’ll be able to manipulate it entirely in mem-
ory. Let’s stack all the tensors returned by the dataset along an extra dimension:

In[15]:
imgs = torch.stack([img_t for img_t, _ in tensor_cifarl10], dim=3)
imgs.shape

Out[15]:
torch.Size([3, 32, 32, 50000])

Now we can easily compute the mean per channel:

In[16]: Recall that view(3, -1) keeps the three channels and
imgs.view (3, -1).mean(dim=1) merges all the remaining dimensions into one, figuring
out the appropriate size. Here our 3 X 32 X 32 image is
out[l6]: transformed into a 3 X 1,024 vector, and then the mean
tensor ([0.4915, 0.4823, 0.4468]) is taken over the 1,024 elements of each channel.

Computing the standard deviation is similar:

In[17]:
imgs.view(3, -1).std(dim=1)

Out[17]:
tensor ([0.2470, 0.2435, 0.2616])

With these numbers in our hands, we can initialize the Normalize transform

In[18]:
transforms.Normalize((0.4915, 0.4823, 0.4468), (0.2470, 0.2435, 0.2616))

Out[18]:
Normalize (mean=(0.4915, 0.4823, 0.4468), std=(0.247, 0.2435, 0.2616))

and concatenate it after the ToTensor transform:

In[19]:
transformed_cifarl0 = datasets.CIFAR1O (
data_path, train=True, download=False,

172 CHAPTER 7 Telling birds from airplanes: Learning from images

transform=transforms.Compose ([
transforms.ToTensor (),
transforms.Normalize((0.4915, 0.4823, 0.4468),
(0.2470, 0.2435, 0.2616))

1))

Note that, at this point, plotting an image drawn from the dataset won’t provide us
with a faithful representation of the actual image:

In[21]:
img_t, _ = transformed_cifarl0[99]

plt.imshow(img_t.permute(l, 2, 0))
plt.show()

The renormalized red car we get is shown in figure 7.5. This is because normalization

has shifted the RGB levels outside the 0.0 to 1.0 range and changed the overall magni-
tudes of the channels. All of the data is still there; it’s just that Matplotlib renders it as
black. We’ll keep this in mind for the future.

Figure 7.5 Our random CIFAR-10
(0] 1=} \O \=) 20 25 30 image after normalization

Still, we have a fancy dataset loaded that contains tens of thousands of images! That’s
quite convenient, because we were going to need something exactly like it.

7.2 Distinguishing birds from airplanes

Jane, our friend at the bird-watching club, has set up a fleet of cameras in the woods
south of the airport. The cameras are supposed to save a shot when something enters
the frame and upload it to the club’s real-time bird-watching blog. The problem is
that a lot of planes coming and going from the airport end up triggering the camera,

7.2.1

Distinguishing birds from airplanes 173

dgéﬁ”x e\r““
A T
. @Q @‘S«?*O\ @
oy
v
\
X

S \
xe_f

<L

Figure 7.6 The problem at hand: we’re going to help our friend tell birds from airplanes
for her blog, by training a neural network to do the job.

so Jane spends a lot of time deleting pictures of airplanes from the blog. What she
needs is an automated system like that shown in figure 7.6. Instead of manually delet-
ing, she needs a neural network—an Al if we’re into fancy marketing speak—to throw
away the airplanes right away.

No worries! We’ll take care of that, no problem—we just got the perfect dataset for
it (what a coincidence, right?). We’ll pick out all the birds and airplanes from our
CIFAR-10 dataset and build a neural network that can tell birds and airplanes apart.

Building the dataset

The first step is to get the data in the right shape. We could create a Dataset subclass
that only includes birds and airplanes. However, the dataset is small, and we only need
indexing and len to work on our dataset. It doesn’t actually have to be a subclass of
torch.utils.data.dataset.Dataset! Well, why not take a shortcut and just filter the
data in cifarl0 and remap the labels so they are contiguous? Here’s how:

In[5]:

label_map = {0: 0, 2: 1}
class_names = ['airplane', 'bird']
cifar2 = [(img, label_map[label])

for img, label in cifarl0
if label in [0, 21]
cifar2_val = [(img, label_mapl[label])
for img, label in cifarl0_val
if label in [0, 2]]

174 CHAPTER 7 Telling birds from airplanes: Learning from images

The cifar2 objectsatisfies the basic requirements for a Dataset—thatis, _ len_ and
__getitem__ are defined—so we’re going to use that. We should be aware, however,
that this is a clever shortcut and we might wish to implement a proper Dataset if we
hit limitations with it.*

We have a dataset! Next, we need a model to feed our data to.

7.2.2 A fully connected model

We learned how to build a neural network in chapter 5. We know that it’s a tensor of
features in, a tensor of features out. After all, an image is just a set of numbers laid out
in a spatial configuration. OK, we don’t know how to handle the spatial configuration
part just yet, but in theory if we just take the image pixels and straighten them into a
long 1D vector, we could consider those numbers as input features, right? This is what
figure 7.7 illustrates.

Let’s try that. How many features per sample? Well, 32 x 32 x 3: that is, 3,072 input
features per sample. Starting from the model we built in chapter 5, our new model
would be an nn.Linear with 3,072 input features and some number of hidden features,

N
(A}

—0
__o\
—0
= O
g O
—0
— 0
s O

— 0

(V)

FEEFEBEPEEFERFER]

>

~

\
5
2|4 [ofl
12|13

AN
\

A

o0 —5 Puman

~

— 0
— 0
— 0
—0
— 0

=0 /

— 0

o O 0O ¢ ¢ ¢ ¢©O O ©O
o O O O ©

Figure 7.7 Treating our image as a 1D vector of values and training a fully connected classifier
on it

* Here, we built the new dataset manually and also wanted to remap the classes. In some cases, it may be enough
to take a subset of the indices of a given dataset. This can be accomplished using the torch.utils
.data.Subset class. Similarly, there is ConcatDataset to join datasets (of compatible items) into a larger
one. For iterable datasets, ChainDataset gives a larger, iterable dataset.

Distinguishing birds from airplanes 175

followed by an activation, and then another nn. Linear that tapers the network down to
an appropriate output number of features (2, for this use case):

In[6]:
import torch.nn as nn

n_out = 2

model = nn.Sequential (
nn.Linear (

Input features — 3072,
512,

)
nn.Tanh (), Hidden layer size
nn.Linear (

512,

Output classes —> n_out,
)

)

We somewhat arbitrarily pick 512 hidden features. A neural network needs at least
one hidden layer (of activations, so two modules) with a nonlinearity in between in
order to be able to learn arbitrary functions in the way we discussed in section 6.3—
otherwise, it would just be a linear model. The hidden features represent (learned)
relations between the inputs encoded through the weight matrix. As such, the model
might learn to “compare” vector elements 176 and 208, but it does not a priori focus
on them because it is structurally unaware that these are, indeed (row 5, pixel 16) and
(row 6, pixel 16), and thus adjacent.
So we have a model. Next we’ll discuss what our model output should be.

7.2.3 Output of a classifier

In chapter 6, the network produced the predicted temperature (a number with a
quantitative meaning) as output. We could do something similar here: make our net-
work output a single scalar value (so n_out = 1), cast the labels to floats (0.0 for air-
plane and 1.0 for bird), and use those as a target for MSELoss (the average of squared
differences in the batch). Doing so, we would cast the problem into a regression prob-
lem. However, looking more closely, we are now dealing with something a bit different
in nature.’

We need to recognize that the output is categorical: it’s either a bird or an air-
plane (or something else if we had all 10 of the original classes). As we learned in
chapter 4, when we have to represent a categorical variable, we should switch to a
one-hot-encoding representation of that variable, such as [1, 0] for airplane or [0, 1]

® Using distance on the “probability” vectors would already have been much better than using MSELoss with
the class numbers—which, recalling our discussion of types of values in the sidebar “Continuous, ordinal, and
categorical values” from chapter 4, does not make sense for categories and does not work at all in practice.
Still, MSELoss is not very well suited to classification problems.

176 CHAPTER 7 Telling birds from airplanes: Learning from images

for bird (the order is arbitrary). This will still work if we have 10 classes, as in the full
CIFAR-10 dataset; we’ll just have a vector of length 10.°

In the ideal case, the network would output torch.tensor ([1.0, 0.0]) for an air-
plane and torch.tensor ([0.0, 1.0]) for a bird. Practically speaking, since our clas-
sifier will not be perfect, we can expect the network to output something in between.
The key realization in this case is that we can interpret our output as probabilities: the
first entry is the probability of “airplane,” and the second is the probability of “bird.”

Casting the problem in terms of probabilities imposes a few extra constraints on
the outputs of our network:

Each element of the output must be in the [0.0, 1.0] range (a probability of
an outcome cannot be less than 0 or greater than 1).

The elements of the output must add up to 1.0 (we're certain that one of the
two outcomes will occur).

It sounds like a tough constraint to enforce in a differentiable way on a vector of num-
bers. Yet there’s a very smart trick that does exactly that, and it’s differentiable: it’s
called softmax.

7.2.4 Representing the output as probabilities

Softmax is a function that takes a vector of values and produces another vector of the
same dimension, where the values satisfy the constraints we just listed to represent
probabilities. The expression for softmax is shown in figure 7.8.

That is, we take the elements of the vector, compute the elementwise exponential,
and divide each element by the sum of exponentials. In code, it’s something like this:

In[7]:

def softmax(x) :
return torch.exp(x) / torch.exp(x).sum()

Let’s test it on an input vector:

In([8]:
X = torch.tensor([1.0, 2.0, 3.01])

softmax (x)

Out[8]:
tensor ([0.0900, 0.2447, 0.6652])

% For the special binary classification case, using two values here is redundant, as one is always 1 minus the
other. And indeed PyTorch lets us output only a single probability using the nn.Sigmoid activation at the
end of the model to get a probability and the binary cross-entropy loss function nn.BCELoss. There also is
an nn.BCELossWithLogits merging these two steps.

Distinguishing birds from airplanes 177

et
04 g\
% %2
g+ et o) B)
e !
EACH ELEMENT e’ l+£ 2 6\ e/z e’\ 62
RETWEEN
O AND | SUM OF ELEMENTS
)) EQUALS |
{l e 2
go'('l'vvxax (X\, Xz\ = &

1
ex“+8xz Cﬂ + efz

X2 Xz

Soé+max (X Rz, Xs\ () L ' =

IS S S R N AN

R

501[""’“&& (X\,W,X\ R - -

X,
+,,_+(", AT S e

Figure 7.8 Handwritten softmax

As expected, it satisfies the constraints on probability:

In[9]:
softmax (x) .sum()

Oout[9]:
tensor(1l.)

Softmax is a monotone function, in that lower values in the input will correspond to
lower values in the output. However, it’s not scale invariant, in that the ratio between
values is not preserved. In fact, the ratio between the first and second elements of the
input is 0.5, while the ratio between the same elements in the output is 0.3678. This is
not a real issue, since the learning process will drive the parameters of the model in a
way that values have appropriate ratios.

The nn module makes softmax available as a module. Since, as usual, input tensors
may have an additional batch Oth dimension, or have dimensions along which they
encode probabilities and others in which they don’t, nn. Softmax requires us to specify
the dimension along which the softmax function is applied:

In[10]:
softmax = nn.Softmax(dim=1)

x = torch.tensor([[1.0, 2.0, 3.0
[1.0, 2.0, 3.011)

178

CHAPTER 7 Telling birds from airplanes: Learning from images

softmax (x)

Out[10]:
tensor ([[0.0900, 0.2447, 0.6652],
[0.0900, 0.2447, 0.6652]1)

In this case, we have two input vectors in two rows (just like when we work with
batches), so we initialize nn. Softmax to operate along dimension 1.

Excellent! We can now add a softmax at the end of our model, and our network
will be equipped to produce probabilities:

In[117:

model = nn.Sequential (
nn.Linear (3072, 512),
nn.Tanh (),
nn.Linear (512, 2),
nn.Softmax (dim=1))

We can actually try running the model before even training it. Let’s do it, just to see
what comes out. We first build a batch of one image, our bird (figure 7.9):

In[12]:
img, _ = cifar2[0]

plt.imshow(img.permute(1l, 2, 0))
plt.show()

Figure 7.9 A random bird
" . from the CIFAR-10 dataset
0 =) \0 5 20 25 30 (after normalization)

Distinguishing birds from airplanes 179

Oh, hello there. In order to call the model, we need to make the input have the right
dimensions. We recall that our model expects 3,072 features in the input, and that nn
works with data organized into batches along the zeroth dimension. So we need to
turn our 3 x 32 x 32 image into a 1D tensor and then add an extra dimension in the
zeroth position. We learned how to do this in chapter 3:

In[13]:
img_batch = img.view(-1) .unsqueeze(0)

Now we’re ready to invoke our model:

In[147]:

out = model (img_batch)

out

out[l4]:

tensor ([[0.4784, 0.5216]1], grad_fn=<SoftmaxBackward>)

So, we got probabilities! Well, we know we shouldn’t get too excited: the weights and
biases of our linear layers have not been trained at all. Their elements are initialized
randomly by PyTorch between —1.0 and 1.0. Interestingly, we also see grad_fn for the
output, which is the tip of the backward computation graph (it will be used as soon as
we need to backpropagate).”

In addition, while we know which output probability is supposed to be which
(recall our class_names), our network has no indication of that. Is the first entry “air-
plane” and the second “bird,” or the other way around? The network can’t even tell
that at this point. It’s the loss function that associates a meaning with these two num-
bers, after backpropagation. If the labels are provided as index 0 for “airplane” and
index 1 for “bird,” then that’s the order the outputs will be induced to take. Thus,
after training, we will be able to get the label as an index by computing the argmax of
the output probabilities: that is, the index at which we get the maximum probability.
Conveniently, when supplied with a dimension, torch.max returns the maximum ele-
ment along that dimension as well as the index at which that value occurs. In our case,
we need to take the max along the probability vector (not across batches), therefore,
dimension 1:

In[15]:
_, index = torch.max(out, dim=1)

index

Out[15]:
tensor ([1])

7 While itis, in principle, possible to say that here the model is uncertain (because it assigns 48% and 52% prob-
abilities to the two classes), it will turn out that typical training results in highly overconfident models. Bayes-
ian neural networks can provide some remedy, but they are beyond the scope of this book.

180 CHAPTER 7 Telling birds from airplanes: Learning from images

It says the image is a bird. Pure luck. But we have adapted our model output to the
classification task at hand by getting it to output probabilities. We also have now run
our model against an input image and verified that our plumbing works. Time to get
training. As in the previous two chapters, we need a loss to minimize during training.

7.2.5 A loss for classifying

We just mentioned that the loss is what gives probabilities meaning. In chapters 5 and
6, we used mean square error (MSE) as our loss. We could still use MSE and make our
output probabilities converge to [0.0, 1.0] and [1.0, 0.0]. However, thinking about
it, we’re not really interested in reproducing these values exactly. Looking back at the
argmax operation we used to extract the index of the predicted class, what we’re really
interested in is that the first probability is higher than the second for airplanes and vice
versa for birds. In other words, we want to penalize misclassifications rather than pains-
takingly penalize everything that doesn’t look exactly like a 0.0 or 1.0.

What we need to maximize in this case is the probability associated with the correct
class, out [class_index], where out is the output of softmax and class_index is a vec-
tor containing 0 for “airplane” and 1 for “bird” for each sample. This quantity—that
is, the probability associated with the correct class—is referred to as the likelihood (of
our model’s parameters, given the data) 8 1In other words, we want a loss function that
is very high when the likelihood is low: so low that the alternatives have a higher prob-
ability. Conversely, the loss should be low when the likelihood is higher than the alter-
natives, and we’re not really fixated on driving the probability up to 1.

There’s a loss function that behaves that way, and it’s called negative log likelihood
(NLL). It has the expression NLL = - sum(log(out_1i[c_1i])), where the sum is taken
over Nsamples and c_1 is the correct class for sample 7. Let’s take a look at figure 7.10,
which shows the NLL as a function of predicted probability.

2.0~

NLL LOSS
"
L

1 I r I Figure 7.10 The NLL
0.0 0.2 o4 0.6 02 .o loss as a function of the

PREDICTED LIKELIHOOD OF TARGET CLASS predicted probabilities

8 For a succinct definition of the terminology, refer to David MacKay’s Information Theory, Inference, and Learning
Algorithms (Cambridge University Press, 2003), section 2.3.

Distinguishing birds from airplanes 181

The figure shows that when low probabilities are assigned to the data, the NLL grows
to infinity, whereas it decreases at a rather shallow rate when probabilities are greater
than 0.5. Remember that the NLL takes probabilities as input; so, as the likelihood
grows, the other probabilities will necessarily decrease.

Summing up, our loss for classification can be computed as follows. For each sam-
ple in the batch:

Run the forward pass, and obtain the output values from the last (linear) layer.
Compute their softmax, and obtain probabilities.
Take the predicted probability corresponding to the correct class (the likeli-
hood of the parameters). Note that we know what the correct class is because
it’s a supervised problem—it’s our ground truth.

Compute its logarithm, slap a minus sign in front of it, and add it to the loss.

So, how do we do this in PyTorch? PyTorch has an nn.NLLLoss class. However (gotcha
ahead), as opposed to what you might expect, it does not take probabilities but rather
takes a tensor of log probabilities as input. It then computes the NLL of our model
given the batch of data. There’s a good reason behind the input convention: taking
the logarithm of a probability is tricky when the probability gets close to zero. The
workaround is to use nn.LogSoftmax instead of nn.Softmax, which takes care to make
the calculation numerically stable.
We can now modify our model to use nn.LogSoftmax as the output module:

model = nn.Sequential (
nn.Linear (3072, 512),
nn.Tanh (),
nn.Linear (512, 2),
nn.LogSoftmax (dim=1))

Then we instantiate our NLL loss:

loss = nn.NLLLoss ()

The loss takes the output of nn.LogSoftmax for a batch as the first argument and a
tensor of class indices (zeros and ones, in our case) as the second argument. We can
now test it with our birdie:

img, label = cifar2[0]
out = model (img.view(-1) .unsqueeze(0))
loss(out, torch.tensor([label]))

tensor (0.6509, grad_fn=<NllLossBackward>)

Ending our investigation of losses, we can look at how using cross-entropy loss
improves over MSE. In figure 7.11, we see that the cross-entropy loss has some slope

182

SISO AJOJLNS ISOJO

CHAPTER 7 Telling birds from airplanes: Learning from images

when the prediction is off target (in the low-loss corner, the correct class is assigned a
predicted probability of 99.97%), while the MSE we dismissed at the beginning satu-
rates much earlier and—crucially—also for very wrong predictions. The underlying
reason is that the slope of the MSE is too low to compensate for the flatness of the soft-
max function for wrong predictions. This is why the MSE for probabilities is not a
good fit for classification work.

SUCCESSFUL AND LESS SUCCESSFUL CLASSIFICATION LOSSES

(4=
.50
.25
.00
0.7%
0.50
0.25

WO 2W

Figure 7.11 The cross entropy (left) and MSE between predicted probabilities and the target probability vector
(right) as functions of the predicted scores—that is, before the (log-) softmax

7.2.6

Training the classifier

All right! We’re ready to bring back the training loop we wrote in chapter 5 and see
how it trains (the process is illustrated in figure 7.12):

import torch
import torch.nn as nn

model = nn.Sequential (
nn.Linear (3072, 512),
nn.Tanh (),
nn.Linear (512, 2),
nn.LogSoftmax (dim=1))

learning_rate = le-2

optimizer = optim.SGD(model.parameters (), lr=learning_rate)

Distinguishing birds from airplanes 183

loss_fn nn.NLLLoss ()

n_epochs 100

for epoch in range(n_epochs) :

for img, label in cifar2:
out = model (img.view(-1) .unsqueeze(0))
loss = loss_fn(out, torch.tensor([labell))

Prints the loss for the
last image. In the next
chapter, we will
improve our output to
give an average over
the entire epoch.

optimizer.zero_grad()
loss.backward()
optimizer.step()

print ("Epoch: %d, Loss: %f" % (epoch, float(loss)))

®
FOR N EPOCHS:

WITH EVERY SAMPLE IN DATASET:
EVALLUATE MODEL (FORWARD)
COMPUTE LOSS
ACCUMULATE GRADIENT OF LOSS

®
FOR N EPOCHS:
WITH EVERY SAMPLE IN DATASET:
EVALLUATE MODEL (FORWARD)
COMPUTE LOSS
COMPUTE GRADIENT OF LOSS

(BACKWARD)
UPDATE MODEL WITH ACCUMULATED GRADIENT

FOR N EPOCHS:
SPLIT DATASET IN MINIBATCHES

(BACKWARD)
UPDATE MODEL WITH GRADIENT

EPOCH

FOR EVERY MINIBATCH:

WITH EVERY SAMPLE IN MINIBATCH: \ITERATION
EVALLATE MODEL (FORWARD) EWD
COMPUTE LOSS
ACCUMULATE GRADIENT OF LOSS (BACKWARD) BWD

UPDATE MODEL WITH ACCUMULATED GRADIENT

_ [uepate
|

Figure 7.12 Training loops: (A) averaging updates over the whole dataset; (B) updating the model
at each sample; (C) averaging updates over minibatches

Looking more closely, we made a small change to the training loop. In chapter 5, we
had just one loop: over the epochs (recall that an epoch ends when all samples in the
training set have been evaluated). We figured that evaluating all 10,000 images in a
single batch would be too much, so we decided to have an inner loop where we evalu-
ate one sample at a time and backpropagate over that single sample.

While in the first case the gradient is accumulated over all samples before being
applied, in this case we apply changes to parameters based on a very partial estimation

184

CHAPTER 7 Telling birds from airplanes: Learning from images

of the gradient on a single sample. However, what is a good direction for reducing the
loss based on one sample might not be a good direction for others. By shuffling samples
at each epoch and estimating the gradient on one or (preferably, for stability) a few
samples at a time, we are effectively introducing randomness in our gradient descent.
Remember SGD? It stands for stochastic gradient descent, and this is what the S is about:
working on small batches (aka minibatches) of shuffled data. It turns out that following
gradients estimated over minibatches, which are poorer approximations of gradients
estimated across the whole dataset, helps convergence and prevents the optimization
process from getting stuck in local minima it encounters along the way. As depicted in
figure 7.13, gradients from minibatches are randomly off the ideal trajectory, which is
part of the reason why we want to use a reasonably small learning rate. Shuffling the
dataset at each epoch helps ensure that the sequence of gradients estimated over mini-
batches is representative of the gradients computed across the full dataset.

Typically, minibatches are a constant size that we need to set prior to training, just
like the learning rate. These are called hyperparameters, to distinguish them from the
parameters of a model.

GRADTENT
OVER
MINIRATCH 7

GRAPIENT
OVER ALL DATA

UPDATE OVER
MINIBATCH

| LosS

Figure 7.13 Gradient descent averaged over the whole dataset (light path) versus stochastic
gradient descent, where the gradient is estimated on randomly picked minibatches

Distinguishing birds from airplanes 185

In our training code, we chose minibatches of size 1 by picking one item at a time from
the dataset. The torch.utils.data module has a class that helps with shuffling and
organizing the data in minibatches: DataLoader. The job of a data loader is to sample
minibatches from a dataset, giving us the flexibility to choose from different sampling
strategies. A very common strategy is uniform sampling after shuffling the data at each
epoch. Figure 7.14 shows the data loader shuffling the indices it gets from the Dataset.

' hax'l' minibstel, , please,! ‘

DATA LOADER

g0 D
balch size = 4 et minibstdy | please! '
chollle, = Teve Sy R

Figure 7.14 A data loader dispensing minibatches by using a dataset to sample
individual data items

Let’s see how this is done. At a minimum, the Dataloader constructor takes a Dataset
object as input, along with batch_size and a shuffle Boolean that indicates whether
the data needs to be shuffled at the beginning of each epoch:

train_loader = torch.utils.data.DatalLoader (cifar2, batch_size=64,
shuffle=True)

A DataLoader can be iterated over, so we can use it directly in the inner loop of our
new training code:

import torch
import torch.nn as nn

train_loader = torch.utils.data.DataLoader (cifar2, batch_size=64,
shuffle=True)

model = nn.Sequential (
nn.Linear (3072, 512),
nn.Tanh (),
nn.Linear (512, 2),
nn.LogSoftmax (dim=1))
learning_rate = le-2
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
loss_fn = nn.NLLLoss ()

n_epochs = 100

for epoch in range (n_epochs) :
for imgs, labels in train_loader:

186

CHAPTER 7 Telling birds from airplanes: Learning from images

batch_size = imgs.shape[0]
outputs = model (imgs.view(batch_size, -1))
loss = loss_fn(outputs, labels)

Due to the shuffling, this now
optimizer.zero_grad() prints the loss for a random
loss.backward () batch—clearly something we
optimizer.step() want to improve in chapter 8.

print ("Epoch: %d, Loss: %f" % (epoch, float(loss)))

At each inner iteration, imgs is a tensor of size 64 x 3 x 32 x 32—that is, a minibatch of
64 (32 x 32) RGB images—while labels is a tensor of size 64 containing label indices.
Let’s run our training:

Epoch: 0, Loss: 0.523478
Epoch: 1, Loss: 0.391083
Epoch: 2, Loss: 0.407412
Epoch: 3, Loss: 0.364203
Epoch: 96, Loss: 0.019537
Epoch: 97, Loss: 0.008973
Epoch: 98, Loss: 0.002607
Epoch: 99, Loss: 0.026200

We see that the loss decreases somehow, but we have no idea whether it’s low enough.
Since our goal here is to correctly assign classes to images, and preferably do that on
an independent dataset, we can compute the accuracy of our model on the validation
set in terms of the number of correct classifications over the total:

val_loader = torch.utils.data.DataLoader (cifar2_val, batch_size=64,
shuffle=False)

correct 0

total = 0

with torch.no_grad() :
for imgs, labels in val_loader:
batch_size = imgs.shape[0]
outputs = model (imgs.view(batch_size, -1))
_, predicted = torch.max(outputs, dim=1)
total += labels.shape[0]
correct += int((predicted == labels).sum())

print ("Accuracy: %$f", correct / total)

Accuracy: 0.794000

Not a great performance, but quite a lot better than random. In our defense, our
model was quite a shallow classifier; it’s a miracle that it worked at all. It did because
our dataset is really simple—a lot of the samples in the two classes likely have system-
atic differences (such as the color of the background) that help the model tell birds
from airplanes, based on a few pixels.

Distinguishing birds from airplanes 187

We can certainly add some bling to our model by including more layers, which will
increase the model’s depth and capacity. One rather arbitrary possibility is

model = nn.Sequential (
nn.Linear (3072, 1024),

nn.Tanh (),
nn.Linear (1024, 512),
nn.Tanh (),
nn.Linear (512, 128),
nn.Tanh (),

nn.Linear (128, 2),
nn.LogSoftmax (dim=1))

Here we are trying to taper the number of features more gently toward the output, in
the hope that intermediate layers will do a better job of squeezing information in
increasingly shorter intermediate outputs.

The combination of nn.LogSoftmax and nn.NLLLoss is equivalent to using
nn.CrossEntropyLoss. This terminology is a particularity of PyTorch, as the
nn.NLLoss computes, in fact, the cross entropy but with log probability predictions as
inputs where nn.CrossEntropyLoss takes scores (sometimes called logits). Techni-
cally, nn.NLLLoss is the cross entropy between the Dirac distribution, putting all mass
on the target, and the predicted distribution given by the log probability inputs.

To add to the confusion, in information theory, up to normalization by sample size,
this cross entropy can be interpreted as a negative log likelihood of the predicted dis-
tribution under the target distribution as an outcome. So both losses are the negative
log likelihood of the model parameters given the data when our model predicts the
(softmax-applied) probabilities. In this book, we won’t rely on these details, but don’t
let the PyTorch naming confuse you when you see the terms used in the literature.

Itis quite common to drop the last nn.LogSoftmax layer from the network and use
nn.CrossEntropyLoss as a loss. Let us try that:

model = nn.Sequential (
nn.Linear (3072, 1024),

nn.Tanh (),

nn.Linear (1024, 512),
nn.Tanh (),

nn.Linear (512, 128),
nn.Tanh (),

nn.Linear (128, 2))

loss_fn = nn.CrossEntropyLoss ()

Note that the numbers will be exactly the same as with nn.LogSoftmax and nn.NLLLoss.
It’s just more convenient to do it all in one pass, with the only gotcha being that the out-
put of our model will not be interpretable as probabilities (or log probabilities). We’ll
need to explicitly pass the output through a softmax to obtain those.

188

CHAPTER 7 Telling birds from airplanes: Learning from images

Training this model and evaluating the accuracy on the validation set (0.802000)
lets us appreciate that a larger model bought us an increase in accuracy, but not that
much. The accuracy on the training set is practically perfect (0.998100). What is this
telling us? That we are overfitting our model in both cases. Our fully connected
model is finding a way to discriminate birds and airplanes on the training set by mem-
orizing the training set, but performance on the validation set is not all that great,
even if we choose a larger model.

PyTorch offers a quick way to determine how many parameters a model has
through the parameters () method of nn.Model (the same method we use to provide
the parameters to the optimizer). To find out how many elements are in each tensor
instance, we can call the numel method. Summing those gives us our total count.
Depending on our use case, counting parameters might require us to check whether a
parameter has requires_grad set to True, as well. We might want to differentiate the
number of trainable parameters from the overall model size. Let’s take a look at what
we have right now:

In[7]:
numel_list = [p.numel ()
for p in connected_model .parameters ()
if p.requires_grad == True]
sum(numel_list), numel_list
Oout[7]:

(3737474, [3145728, 1024, 524288, 512, 65536, 128, 256, 21])

Wow, 3.7 million parameters! Not a small network for such a small input image, is it?
Even our first network was pretty large:

In[9]:

numel_list = [p.numel() for p in first_model.parameters ()]
sum(numel_list), numel_list

Out[9]:

(1574402, [1572864, 512, 1024, 2])

The number of parameters in our first model is roughly half that in our latest model.
Well, from the list of individual parameter sizes, we start having an idea what’s
responsible: the first module, which has 1.5 million parameters. In our full network,
we had 1,024 output features, which led the first linear module to have 3 million
parameters. This shouldn’t be unexpected: we know that a linear layer computes y =
weight * x + bias, and if x has length 3,072 (disregarding the batch dimension for
simplicity) and y must have length 1,024, then the weight tensor needs to be of size
1,024 x 3,072 and the bias size must be 1,024. And 1,024 * 3,072 + 1,024 = 3,146,752,
as we found earlier. We can verify these quantities directly:

7.2.7

Distinguishing birds from airplanes 189

In[10]:
linear = nn.Linear (3072, 1024)

linear.weight.shape, linear.bias.shape

out[1l0]:
(torch.Size([1024, 3072]), torch.Size([1024]1))

What is this telling us? That our neural network won’t scale very well with the number
of pixels. What if we had a 1,024 x 1,024 RGB image? That’s 3.1 million input values.
Even abruptly going to 1,024 hidden features (which is not going to work for our clas-
sifier), we would have over 3 billion parameters. Using 32-bit floats, we’re already at 12
GB of RAM, and we haven’t even hit the second layer, much less computed and stored
the gradients. That’s just not going to fit on most present-day GPUs.

The limits of going fully connected

Let’s reason about what using a linear module on a 1D view of our image entails—figure
7.15 shows what is going on. It’s like taking every single input value—that is, every single
component in our RGB image—and computing a linear combination of it with all the
other values for every output feature. On one hand, we are allowing for the combina-
tion of any pixel with every other pixel in the image being potentially relevant for our
task. On the other hand, we aren’t utilizing the relative position of neighboring or far-
away pixels, since we are treating the image as one big vector of numbers.

INPUT TMAGE OUTPUT TMAGE
|-

.
o be

.OLJL

oLTPLT NOTE: THERE'S ONE VECTOR OF WEIGHTS
TO VECTOR PIXEL
OF TNPUT PER OLTPUT PIXEL.
PIXELS

ALL INPUT PIXELS CONTRIBVUTE TO
EVERY OUTPLT PIXEL.

WEIGHTS RELATIVE TO OUTPUT PIXEL

OVERALL: Ut UxY
IMAGE \ox\@ f’ IMAGE
=/ WEIGHTS |=

Figure 7.15 Using a fully connected module with an input image: every input pixel is combined with
every other to produce each element in the output.

JOLOAN-9)
x
JYOLO3N-9)

190

CHAPTER 7 Telling birds from airplanes: Learning from images

An airplane flying in the sky captured in a 32 x 32 image will be very roughly similar to
a dark, cross-like shape on a blue background. A fully connected network as in figure
7.15 would need to learn that when pixel 0,1 is dark, pixel 1,1 is also dark, and so on,
that’s a good indication of an airplane. This is illustrated in the top half of figure 7.16.
However, shift the same airplane by one pixel or more as in the bottom half of the fig-
ure, and the relationships between pixels will have to be relearned from scratch: this
time, an airplane is likely when pixel 0,2 is dark, pixel 1,2 is dark, and so on. In more
technical terms, a fully connected network is not translation invariant. This means a
network that has been trained to recognize a Spitfire starting at position 4,4 will not
be able to recognize the exact same Spitfire starting at position 8,8. We would then have
to augment the dataset—that is, apply random translations to images during training—
so the network would have a chance to see Spitfires all over the image, and we would
need to do this for every image in the dataset (for the record, we could concatenate a

o 0
B B
PLANE o | oy oLTPUT
[] 1] .
\
ol (o]o i + }
TR R | 0 - lo]
] o
o(\lO|O Z 3
) o |
o 0
J o] o
o o
o] o]
PLANE (TRANSLATED) 0] E
o] |
b | 0 8
PRR || o °
1o I }
0 il il |
] L [k M o] L\
o0 (o) | 0
\ Bl * @ ©,
oj{olo|o | © | | O |
‘ 0]
NE B
2]]
o~ o
0| o |
© | 2
WEIGHTS

Figure 7.16 Translation invariance, or the lack thereof, with fully connected layers

7.3

74

Exercises 191

transform from torchvision.transforms to do this transparently). However, this data
augmentation strategy comes at a cost: the number of hidden features—that is, of
parameters—must be large enough to store the information about all of these trans-
lated replicas.

So, at the end of this chapter, we have a dataset, a model, and a training loop, and
our model learns. However, due to a mismatch between our problem and our network
structure, we end up overfitting our training data, rather than learning the general-
ized features of what we want the model to detect.

We’ve created a model that allows for relating every pixel to every other pixel in
the image, regardless of their spatial arrangement. We have a reasonable assumption
that pixels that are closer together are in theory a lot more related, though. This
means we are training a classifier that is not translation-invariant, so we're forced to
use a lot of capacity for learning translated replicas if we want to hope to do well on
the validation set. There has to be a better way, right?

Of course, most such questions in a book like this are rhetorical. The solution to
our current set of problems is to change our model to use convolutional layers. We’ll
cover what that means in the next chapter.

Conclusion

In this chapter, we have solved a simple classification problem from dataset, to model,
to minimizing an appropriate loss in a training loop. All of these things will be stan-
dard tools for your PyTorch toolbelt, and the skills needed to use them will be useful
throughout your PyTorch tenure.

We’ve also found a severe shortcoming of our model: we have been treating 2D
images as 1D data. Also, we do not have a natural way to incorporate the translation
invariance of our problem. In the next chapter, you’ll learn how to exploit the 2D
nature of image data to get much better results.?

We could use what we have learned right away to process data without this translation
invariance. For example, using it on tabular data or the time-series data we met in chap-
ter 4, we can probably do great things already. To some extent, it would also be possible
to use it on text data that is appropriately represented.'’

Exercises

Use torchvision to implement random cropping of the data.
How are the resulting images different from the uncropped originals?
What happens when you request the same image a second time?

What is the result of training using randomly cropped images?

® The same caveat about translation invariance also applies to purely 1D data: an audio classifier should likely
produce the same output even if the sound to be classified starts a tenth of a second earlier or later.

19" Bag-of-words models, which just average over word embeddings, can be processed with the network design from
this chapter. More contemporary models take the positions of the words into account and need more
advanced models.

192

7.5

CHAPTER 7 Telling birds from airplanes: Learning from images

Switch loss functions (perhaps MSE).
Does the training behavior change?

Isit possible to reduce the capacity of the network enough thatitstops overfitting?
How does the model perform on the validation set when doing so?

Summary

Computer vision is one of the most extensive applications of deep learning.
Several datasets of annotated images are publicly available; many of them can
be accessed via torchvision.

Datasets and DataLoaders provide a simple yet effective abstraction for loading
and sampling datasets.

For a classification task, using the softmax function on the output of a network
produces values that satisfy the requirements for being interpreted as probabili-
ties. The ideal loss function for classification in this case is obtained by using the
output of softmax as the input of a non-negative log likelihood function. The
combination of softmax and such loss is called cross entropy in PyTorch.
Nothing prevents us from treating images as vectors of pixel values, dealing
with them using a fully connected network, just like any other numerical data.
However, doing so makes it much harder to take advantage of the spatial rela-
tionships in the data.

Simple models can be created using nn.Sequential.

Using convolutions
to generalize

This chapter covers

Understanding convolution
Building a convolutional neural network
Creating custom nn.Module subclasses

The difference between the module and
functional APls

Design choices for neural networks

In the previous chapter, we built a simple neural network that could fit (or overfit)
the data, thanks to the many parameters available for optimization in the linear lay-
ers. We had issues with our model, however, in that it was better at memorizing the
training set than it was at generalizing properties of birds and airplanes. Based on
our model architecture, we’ve got a guess as to why that’s the case. Due to the fully
connected setup needed to detect the various possible translations of the bird or
airplane in the image, we have both too many parameters (making it easier for the
model to memorize the training set) and no position independence (making it
harder to generalize). As we discussed in the last chapter, we could augment our

193

194

8.1

811

CHAPTER 8 Using convolutions to generalize

training data by using a wide variety of recropped images to try to force generaliza-
tion, but that won’t address the issue of having too many parameters.

There is a better way! It consists of replacing the dense, fully connected affine trans-
formation in our neural network unit with a different linear operation: convolution.

The case for convolutions

Let’s get to the bottom of what convolutions are and how we can use them in our neu-
ral networks. Yes, yes, we were in the middle of our quest to tell birds from airplanes,
and our friend is still waiting for our solution, but this diversion is worth the extra
time spent. We’ll develop an intuition for this foundational concept in computer
vision and then return to our problem equipped with superpowers.

In this section, we’ll see how convolutions deliver locality and translation invariance.
We’ll do so by taking a close look at the formula defining convolutions and applying it
using pen and paper—but don’t worry, the gist will be in pictures, not formulas.

We said earlier that taking a 1D view of our input image and multiplying it by an
n_output_features x n_input_features weight matrix, as is done in nn.Linear,
means for each channel in the image, computing a weighted sum of all the pixels mul-
tiplied by a set of weights, one per output feature.

We also said that, if we want to recognize patterns corresponding to objects, like an
airplane in the sky, we will likely need to look at how nearby pixels are arranged, and
we will be less interested in how pixels that are far from each other appear in combi-
nation. Essentially, it doesn’t matter if our image of a Spitfire has a tree or cloud or
kite in the corner or not.

In order to translate this intuition into mathematical form, we could compute the
weighted sum of a pixel with its immediate neighbors, rather than with all other pixels
in the image. This would be equivalent to building weight matrices, one per output
feature and output pixel location, in which all weights beyond a certain distance from
a center pixel are zero. This will still be a weighted sum: that is, a linear operation.

What convolutions do

We identified one more desired property earlier: we would like these localized patterns
to have an effect on the output regardless of their location in the image: that is, to be
translation invariant. To achieve this goal in a matrix applied to the image-as-a-vector we
used in chapter 7 would require implementing a rather complicated pattern of weights
(don’t worry if it is too complicated; it’ll get better shortly): most of the weight matrix
would be zero (for entries corresponding to input pixels too far away from the output
pixel to have an influence). For other weights, we would have to find a way to keep
entries in sync that correspond to the same relative position of input and output pixels.
This means we would need to initialize them to the same values and ensure that all these
tied weights stayed the same while the network is updated during training. This way, we
would ensure that weights operate in neighborhoods to respond to local patterns, and
local patterns are identified no matter where they occur in the image.

The case for convolutions 195

Of course, this approach is more than impractical. Fortunately, there is a readily
available, local, translation-invariant linear operation on the image: a convolution. We
can come up with a more compact description of a convolution, but what we are going
to describe is exactly what we just delineated—only taken from a different angle.

Convolution, or more precisely, discrete convolution' (there’s an analogous continu-
ous version that we won’t go into here), is defined for a 2D image as the scalar prod-
uct of a weight matrix, the kernel, with every neighborhood in the input. Consider a
3 x 3 kernel (in deep learning, we typically use small kernels; we’ll see why later on) as
a 2D tensor

weight = torch.tensor([[w00, w01, wO02],
[wl0, wll, wl2],
[w20, w21, w22]])

and a l-channel, MxN image:

image = torch.tensor([[i00, 101, 102, i03, ..., 1i0N],
[i10, 4121, 4i12, i13, ..., il1N],
[i20, 121, i22, i23, ..., i2N],
[i30, 131, i32, 133, ..., 1i3N],
[iMO, iMIm iM2, iM3, ..., iMN]])

We can compute an element of the output image (without bias) as follows:

oll = i11 * w00 + il2 * w0l + i22 * w02 +
i21 * wl0 + i22 * wll + i23 * wl2 +
i31 * w20 + i32 * w2l + i33 * w22

Figure 8.1 shows this computation in action.

That is, we “translate” the kernel on the i11 location of the input image, and we
multiply each weight by the value of the input image at the corresponding location.
Thus, the output image is created by translating the kernel on all input locations and
performing the weighted sum. For a multichannel image, like our RGB image, the
weight matrix would be a 3 x 3 x 3 matrix: one set of weights for every channel, con-
tributing together to the output values.

Note that, just like the elements in the weight matrix of nn.Linear, the weights in
the kernel are not known in advance, but they are initialized randomly and updated
through backpropagation. Note also that the same kernel, and thus each weight in the
kernel, is reused across the whole image. Thinking back to autograd, this means the use
of each weight has a history spanning the entire image. Thus, the derivative of the loss
with respect to a convolution weight includes contributions from the entire image.

! There is a subtle difference between PyTorch’s convolution and mathematics’ convolution: one argument’s
sign is flipped. If we were in a pedantic mood, we could call PyTorch’s convolutions discrete cross-correlations.

196

CHAPTER 8 Using convolutions to generalize

olt]o ofi]o
IMAGE KERNEL = —F
o
"TINE o N o o1\ ofv|o
. o o \ oUTPUT
tlo |0 ol|\v |0 L} 7A </
olo|o [(| <
| KERNEL /’ g |
WEIGHTS
ofi]o olv]o
Cu T[]
ol ﬁ ofi]o
SCALAR PRODUCT
BETWEEN TRANSLATED SAME KERNEL WEIGHTS
KERNEL AND IMAGE USED ACROSS THE IMAGE
(ZEROS OUTSIDE THE KERNEL) J/
¥
LOCALITY TRANSLATION
INVARIANCE

Figure 8.1 Convolution: locality and translation invariance

8.2

It’s now possible to see the connection to what we were stating earlier: a convolution is

equivalent to having multiple linear operations whose weights are zero almost every-

where except around individual pixels and that receive equal updates during training.
Summarizing, by switching to convolutions, we get

Local operations on neighborhoods
Translation invariance

Models with a lot fewer parameters

The key insight underlying the third point is that, with a convolution layer, the num-
ber of parameters depends not on the number of pixels in the image, as was the case
in our fully connected model, but rather on the size of the convolution kernel (3 x 3,
5 x 5, and so on) and on how many convolution filters (or output channels) we decide
to use in our model.

Convolutions in action
Well, it looks like we’ve spent enough time down a rabbit hole! Let’s see some PyTorch
in action on our birds versus airplanes challenge. The torch.nn module provides con-
volutions for 1, 2, and 3 dimensions: nn.Conv1ld for time series, nn.Conv2d for images,
and nn.Conv3d for volumes or videos.

For our CIFAR-10 data, we’ll resort to nn.Conv2d. At a minimum, the arguments we
provide to nn.Conv2d are the number of input features (or channels, since we’re dealing

Convolutions in action 197

with multichannelimages: that is, more than one value per pixel), the number of output
features, and the size of the kernel. For instance, for our first convolutional module,
we’ll have 3 input features per pixel (the RGB channels) and an arbitrary number of
channels in the output—say, 16. The more channels in the output image, the more the
capacity of the network. We need the channels to be able to detect many different types
of features. Also, because we are randomly initializing them, some of the features we’ll
get, even after training, will turn out to be useless.? Let’s stick to a kernel size of 3 x 3.

It is very common to have kernel sizes that are the same in all directions, so
PyTorch has a shortcut for this: whenever kernel_size=3 is specified for a 2D convo-
lution, it means 3 x 3 (provided as a tuple (3, 3) in Python). For a 3D convolution, it
means 3 x 3 x 3. The CT scans we will see in part 2 of the book have a different voxel
(volumetric pixel) resolution in one of the three axes. In such a case, it makes sense to
consider kernels that have a different size for the exceptional dimension. But for now,
we stick with having the same size of convolutions across all dimensions:

In[11]:

conv = nn.Conv2d(3, 16, kernel size=3) T Instead of the shortcut kernel_size=3, we

conv could equivalently pass in the tuple that we

¥ out[11]: see in the output: kernel_size=(3, 3).

Conv2d (3, 16, kernel_size=(3, 3), stride=(1, 1))

What do we expect to be the shape of the weight tensor? The kernel is of size 3 x 3, so
we want the weight to consist of 3 x 3 parts. For a single output pixel value, our kernel
would consider, say, in_ch = 3 input channels, so the weight component for a single
output pixel value (and by translation the invariance for the entire output channel) is
of shape in_ch x 3 x 3. Finally, we have as many of those as we have output channels,
here out_ch = 16, so the complete weight tensor is out_ch x in_ch x 3 x 3, in our case
16 x 3 x 3 x 3. The bias will have size 16 (we haven’t talked about bias for a while for
simplicity, but just as in the linear module case, it’s a constant value we add to each
channel of the output image). Let’s verify our assumptions:

In[12]:
conv.weight.shape, conv.bias.shape

out[l2]:
(torch.Size([16, 3, 3, 3]), torch.Size([1l6]))

We can see how convolutions are a convenient choice for learning from images. We
have smaller models looking for local patterns whose weights are optimized across the
entire image.

A 2D convolution pass produces a 2D image as output, whose pixels are a weighted
sum over neighborhoods of the input image. In our case, both the kernel weights and

% This is part of the lottery ticket hypothesis: that many kernels will be as useful as losing lottery tickets. See Jona-
than Frankle and Michael Carbin, “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Net-
works,” 2019, https:/ /arxiv.org/abs/1803.03635.

https://arxiv.org/abs/1803.03635

198

821

CHAPTER 8 Using convolutions to generalize

the bias conv.weight are initialized randomly, so the output image will not be particu-
larly meaningful. As usual, we need to add the zeroth batch dimension with
unsqueeze if we want to call the conv module with one input image, since nn.Conv2d
expects a Bx Cx Hx Wshaped tensor as input:

In[13]:

img, _ = cifar2[0]

output = conv(img.unsqueeze (0))
img.unsqueeze (0) .shape, output.shape

Out[13]:
(torch.size([1, 3, 32, 32]), torch.Size([1l, 16, 30, 30]))

We’re curious, so we can display the output, shown in figure 8.2:

In[15]:
plt.imshow(output [0, 0].detach(), cmap='gray')
plt.show()

OUTPUT

6 5 1 1B 20 25 =0 6 5 1 & 20 25 320

Figure 8.2 Our bird after a random convolution treatment. (We cheated a little with the code
to show you the input, too.)

Wait a minute. Let’s take a look a the size of output: it’s torch.Size([1, 16, 30,
30]1). Huh; we lost a few pixels in the process. How did that happen?

Padding the boundary

The fact that our output image is smaller than the inputis a side effect of deciding what
to do at the boundary of the image. Applying a convolution kernel as a weighted sum
of pixels in a 3 x 3 neighborhood requires that there are neighbors in all directions. If
we are at i00, we only have pixels to the right of and below us. By default, PyTorch will
slide the convolution kernel within the input picture, getting width - kernel_width + 1
horizontal and vertical positions. For odd-sized kernels, this results in images that are

Convolutions in action 199

one-half the convolution kernel’s width (in our case, 3//2 = 1) smaller on each side.
This explains why we’re missing two pixels in each dimension.

However, PyTorch gives us the possibility of padding the image by creating ghost pix-
els around the border that have value zero as far as the convolution is concerned. Fig-
ure 8.3 shows padding in action.

In our case, specifying padding=1 when kernel_size=3 means i00 has an extra set
of neighbors above it and to its left, so that an output of the convolution can be com-
puted even in the corner of our original image.” The net result is that the output has
now the exact same size as the input:

In[16]:
conv = nn.Conv2d(3, 1, kernel_size=3, padding=1) <+— Now with padding
output = conv(img.unsqueeze (0))

img.unsqueeze (0) .shape, output.shape

out[le6]:
(torch.size([1, 3, 32, 32]), torch.Size([1l, 1, 32, 321))
e ‘ r
|
N \ .
5 \H o i i’
ZEROS
oLUTSIDE
g o\l o o |\
OUTPLT g
! 0]l i = . O I
6\ 9 ol | o 21242 |0 b i o { g
2|15(2 |1\
2212 |0
qg of o AR o i ¢ 14
\ il T 0
3 ol {[o o i g
[1% [q
T T T
¢ Tﬂ ot d

Figure 8.3 Zero padding to preserve the image size in the output

* For even-sized kernels, we would need to pad by a different number on the left and right (and top and bot-
tom). PyTorch doesn’t offer to do this in the convolution itself, but the function torch.nn. functional
.pad can take care of it. But it’s best to stay with odd kernel sizes; even-sized kernels are just odd.

200

822

CHAPTER 8 Using convolutions to generalize

Note that the sizes of weight and bias don’t change, regardless of whether padding is
used.

There are two main reasons to pad convolutions. First, doing so helps us separate
the matters of convolution and changing image sizes, so we have one less thing to
remember. And second, when we have more elaborate structures such as skip con-
nections (discussed in section 8.5.3) or the U-Nets we’ll cover in part 2, we want the
tensors before and after a few convolutions to be of compatible size so that we can
add them or take differences.

Detecting features with convolutions
We said earlier that weight and bias are parameters that are learned through back-
propagation, exactly as it happens for weight and bias in nn.Linear. However, we can
play with convolution by setting weights by hand and see what happens.

Let’s first zero out bias, just to remove any confounding factors, and then set
weights to a constant value so that each pixel in the output gets the mean of its neigh-
bors. For each 3 x 3 neighborhood:

In[17]:
with torch.no_grad():
conv.bias.zero_()

with torch.no_grad() :
conv.weight.fill_(1.0 / 9.0)

We could have gone with conv.weight.one_ () —that would result in each pixel in the
output being the sum of the pixels in the neighborhood. Not a big difference, except
that the values in the output image would have been nine times larger.

Anyway, let’s see the effect on our CIFAR image:

In[18]:

output = conv(img.unsqueeze (0))
plt.imshow(output[0, 0].detach(), cmap='gray')
plt.show()

Aswe could have predicted, the filter produces a blurred version of the image, as shown
in figure 8.4. After all, every pixel of the output is the average of a neighborhood of the
input, so pixels in the output are correlated and change more smoothly.

Next, let’s try something different. The following kernel may look a bit mysterious
at first:

In[19]:
conv = nn.Conv2d(3, 1, kernel_size=3, padding=1)

with torch.no_grad() :
conv.weight[:] = torch.tensor ([

conv.bias.zero_()

Convolutions in action 201

ouTPUT

254

30

25 30 o] 5 (2] 15 20 25 30

] 5 o 5 20

Figure 8.4 Our bird, this time blurred thanks to a constant convolution kernel

Working out the weighted sum for an arbitrary pixel in position 2,2, as we did earlier
for the generic convolution kernel, we get

022 = i13 - i1l +
i23 - 121 +
i33 - 131

which performs the difference of all pixels on the right of i22 minus the pixels on the
left of i22. If the kernel is applied on a vertical boundary between two adjacent regions
of different intensity, 022 will have a high value. If the kernel is applied on a region of
uniform intensity, 022 will be zero. It’s an edge-detection kernel: the kernel highlights the
vertical edge between two horizontally adjacent regions.

Applying the convolution kernel to our image, we see the result shown in figure
8.5. As expected, the convolution kernel enhances the vertical edges. We could build

oLTPUT

] 5 (o] 5 20 25 30] 5 0 [\ 20 25 30

Figure 8.5 Vertical edges throughout our bird, courtesy of a handcrafted convolution kernel

202

CHAPTER 8 Using convolutions to generalize

lots more elaborate filters, such as for detecting horizontal or diagonal edges, or cross-
like or checkerboard patterns, where “detecting” means the output has a high magni-
tude. In fact, the job of a computer vision expert has historically been to come up with
the most effective combination of filters so that certain features are highlighted in
images and objects can be recognized.

With deep learning, we let kernels be estimated from data in whatever way the dis-
crimination is most effective: for instance, in terms of minimizing the negative cross-
entropy loss between the output and the ground truth that we introduced in section
7.2.5. From this angle, the job of a convolutional neural network is to estimate the ker-
nel of a set of filter banks in successive layers that will transform a multichannel image
into another multichannel image, where different channels correspond to different
features (such as one channel for the average, another channel for vertical edges, and
so on). Figure 8.6 shows how the training automatically learns the kernels.

CONVOLUTION
| AcTWATION

@_I/ (1(;

-
B [L
KERNELS ONE OUTPUT 7 BACKDROP
(3 x3xN lNPUT\ CHANNEL PER
wa\em /' b Wi

UPDATE LEARNING “DERWATWE OF
QATE LOSS WITH RespecT

TO WEIGHT

Figure 8.6 The process of learning with convolutions by estimating the gradient at the kernel weights and
updating them individually in order to optimize for the loss

8.2.3

Looking further with depth and pooling

This is all well and good, but conceptually there’s an elephant in the room. We got all
excited because by moving from fully connected layers to convolutions, we achieve
locality and translation invariance. Then we recommended the use of small kernels,
like 3 x 3, or 5 x b: that’s peak locality, all right. What about the big picture How do we
know that all structures in our images are 3 pixels or b pixels wide? Well, we don’t,
because they aren’t. And if they aren’t, how are our networks going to be equipped to
see those patterns with larger scope? This is something we’ll really need if we want to

Convolutions in action 203

solve our birds versus airplanes problem effectively, since although CIFAR-10 images
are small, the objects still have a (wing-)span several pixels across.

One possibility could be to use large convolution kernels. Well, sure, at the limit we
could get a 32 x 32 kernel for a 32 x 32 image, but we would converge to the old fully
connected, affine transformation and lose all the nice properties of convolution.
Another option, which is used in convolutional neural networks, is stacking one con-
volution after the other and at the same time downsampling the image between suc-
cessive convolutions.

FROM LARGE TO SMALL: DOWNSAMPLING

Downsampling could in principle occur in different ways. Scaling an image by half is
the equivalent of taking four neighboring pixels as input and producing one pixel as
output. How we compute the value of the output based on the values of the input is
up to us. We could

Average the four pixels. This average pooling was a common approach early on but
has fallen out of favor somewhat.

Take the maximum of the four pixels. This approach, called max pooling, is currently
the most commonly used approach, but it has a downside of discarding the
other three-quarters of the data.

Perform a strided convolution, where only every Nth pixel is calculated. A 3 x 4 convolu-
tion with stride 2 still incorporates input from all pixels from the previous layer.
The literature shows promise for this approach, but it has not yet supplanted
max pooling.

We will be focusing on max pooling, illustrated in figure 8.7, going forward. The fig-
ure shows the most common setup of taking non-overlapping 2 x 2 tiles and taking the
maximum over each of them as the new pixel at the reduced scale.

Intuitively, the output images from a convolution layer, especially since they are fol-
lowed by an activation just like any other linear layer, tend to have a high magnitude

INPUT 2] 2 2o
(OUTPUT OF CONV + ACTIVATION) 2 ls -
ouUTPUT
2.8 2 | o |
MAX=5 -
2 B 2|\ MAXPooL LL | 2 | «—"MAx=2
N
o\\10)|0
2|2 2|0
o\ olo

Figure 8.7 Max pooling in detail

204 CHAPTER 8 Using convolutions to generalize

where certain features corresponding to the estimated kernel are detected (such as
vertical lines). By keeping the highest value in the 2 x 2 neighborhood as the downs-
ampled output, we ensure that the features that are found swrvive the downsampling,
at the expense of the weaker responses.

Max pooling is provided by the nn.MaxPool2d module (as with convolution, there are
versions for 1D and 3D data). It takes as input the size of the neighborhood over which
to operate the pooling operation. If we wish to downsample our image by half, we’ll want
to use a size of 2. Let’s verify that it works as expected directly on our input image:

In[21]:
pool = nn.MaxPool2d(2)
output = pool (img.unsqueeze(0))

img.unsqueeze (0) .shape, output.shape

Oout[21]:
(torch.size([1, 3, 32, 32]), torch.Size([1l, 3, 16, 16]))

COMBINING CONVOLUTIONS AND DOWNSAMPLING FOR GREAT GOOD

Let’s now see how combining convolutions and downsampling can help us recognize
larger structures. In figure 8.8, we start by applying a set of 3 x 3 kernels on our 8 x 8
image, obtaining a multichannel output image of the same size. Then we scale down
the output image by half, obtaining a 4 x 4 image, and apply another set of 3 x 3 ker-
nels to it. This second set of kernels operates on a 3 x 3 neighborhood of something
that has been scaled down by half, so it effectively maps back to 8 x 8 neighborhoods
of the input. In addition, the second set of kernels takes the output of the first set of
kernels (features like averages, edges, and so on) and extracts additional features on
top of those.

So, on one hand, the first set of kernels operates on small neighborhoods on first-
order, low-level features, while the second set of kernels effectively operates on wider
neighborhoods, producing features that are compositions of the previous features.
This is a very powerful mechanism that provides convolutional neural networks with
the ability to see into very complex scenes—much more complex than our 32 x 32
images from the CIFAR-10 dataset.

INPOT IMAGE CONV CONV OLUTPUT MAX PooL CONV CONV
KERNEL OUTPUT KERNEL OUTPUT MAX POOL
EEOE H oUTPUT
K E“ “\z““l‘ ~ 12142 | o[z ¢
T T T e e ® n = 3]4}15]5 |413 |1 alsluli | @ d = |elalu|s | |2 |
ol 3”“5‘5“3\,\ 2|42] ol ol
Uz [w [« [z SE
: : {zl=z | i
T “"CROSS
B TOP
LEFT”
0

Figure 8.8 More convolutions by hand, showing the effect of stacking convolutions and downsampling: a large
cross is highlighted using two small, cross-shaped kernels and max pooling.

824

Convolutions in action 205

The receptive field of output pixels

When the second 3 x 3 convolution kernel produces 21 in its conv output in figure
8.8, this is based on the top-left 3 x 3 pixels of the first max pool output. They, in turn,
correspond to the 6 x 6 pixels in the top-left corner in the first conv output, which in
turn are computed by the first convolution from the top-left 7 x 7 pixels. So the pixel
in the second convolution output is influenced by a 7 X 7 input square. The first
convolution also uses an implicitly “padded” column and row to produce the output in
the corner; otherwise, we would have an 8 x 8 square of input pixels informing a given
pixel (away from the boundary) in the second convolution’s output. In fancy language,
we say that a given output neuron of the 3 x 3-conv, 2 X 2-max-pool, 3 x 3-conv
construction has a receptive field of 8 x 8.

Putting it all together for our network

With these building blocks in our hands, we can now proceed to build our convolu-
tional neural network for detecting birds and airplanes. Let’s take our previous fully
connected model as a starting point and introduce nn.Conv2d and nn.MaxPool2d as
described previously:

In[22]:
model = nn.Sequential (
nn.Conv2d (3, 16, kernel_size=3, padding=1),
nn.Tanh (),
nn.MaxPool2d(2),
nn.Conv2d (16, 8, kernel_size=3, padding=1),
nn.Tanh (),
nn.MaxPool2d(2),
...
)

The first convolution takes us from 3 RGB channels to 16, thereby giving the network
a chance to generate 16 independent features that operate to (hopefully) discrimi-
nate low-level features of birds and airplanes. Then we apply the Tanh activation func-
tion. The resulting 16-channel 32 x 32 image is pooled to a 16-channel 16 x 16 image
by the first MaxPool3d. At this point, the downsampled image undergoes another con-
volution that generates an 8-channel 16 x 16 output. With any luck, this output will
consist of higher-level features. Again, we apply a Tanh activation and then pool to an
8-channel 8 x 8 output.

Where does this end? After the input image has been reduced to a set of 8 x 8 fea-
tures, we expect to be able to output some probabilities from the network that we can
feed to our negative log likelihood. However, probabilities are a pair of numbers in a
1D vector (one for airplane, one for bird), but here we’re still dealing with multichan-
nel 2D features.

206 CHAPTER 8 Using convolutions to generalize

Thinking back to the beginning of this chapter, we already know what we need to
do: turn the 8-channel 8 x 8 image into a 1D vector and complete our network with a
set of fully connected layers:

In[23]:
model = nn.Sequential (
nn.Conv2d (3, 16, kernel_size=3, padding=1),
nn.Tanh(),
nn.MaxPool2d(2),
nn.Conv2d (16, 8, kernel_size=3, padding=1),

nn.Tanh (),

nn.MaxPool2d(2),

o . o x Warning: Something
mn.Linear(g * 8 * 8, 32), important is missing here!
nn.Tanh (),

nn.Linear (32, 2))

This code gives us a neural network as shown in figure 8.9.

B~ %J
. [F ~ _
f’f’&"@J* _>@J_>@_>
&~ =

Figure 8.9 Shape of a typical convolutional network, including the one we’re building. An image is fed to a series
of convolutions and max pooling modules and then straightened into a 1D vector and fed into fully connected modules.

o
o

g\o — Pero= 0.2
é /o\ Paretane = 0.2

\\\\boo°°°°°

0000000000000 0000

Ignore the “something missing” comment for a minute. Let’s first notice that the size
of the linear layer is dependent on the expected size of the output of MaxPool2d: 8 x 8
x 8 =512. Let’s count the number of parameters for this small model:

In[24]:
numel_list = [p.numel() for p in model.parameters ()]
sum(numel_list), numel_list

Oout[24]:
(18090, [432, 16, 1152, 8, 16384, 32, 64, 21])

That’s very reasonable for a limited dataset of such small images. In order to increase
the capacity of the model, we could increase the number of output channels for the
convolution layers (that is, the number of features each convolution layer generates),
which would lead the linear layer to increase its size as well.

We put the “Warning” note in the code for a reason. The model has zero chance of
running without complaining:

Subclassing nn.Module 207

In[25]:
model (img.unsqueeze (0))

out[25]:

RuntimeError: size mismatch, ml:
[64 x 8], m2: [512 x 32] at c:\...\THTensorMath.cpp:940

Admittedly, the error message is a bit obscure, but not too much so. We find refer-
ences to linear in the traceback: looking back at the model, we see that only module
that has to have a 512 x 32 tensor is nn.Linear (512, 32), the first linear module after
the last convolution block.

What’s missing there is the reshaping step from an 8-channel 8 x 8 image to a 512-
element, 1D vector (1D if we ignore the batch dimension, that is). This could be
achieved by calling view on the output of the last nn.MaxPool2d, but unfortunately, we
don’t have any explicit visibility of the output of each module when we use
nn.Sequential.?

8.3 Subclassing nn.Module

Atsome point in developing neural networks, we will find ourselves in a situation where
we want to compute something that the premade modules do not cover. Here, itis some-
thing very simple like reshaping,5; but in section 8.5.3, we use the same construction to
implement residual connections. So in this section, we learn how to make our own
nn.Module subclasses that we can then use just like the prebuilt ones or nn. Sequential.

When we want to build models that do more complex things than just applying
one layer after another, we need to leave nn.Sequential for something that gives us
added flexibility. PyTorch allows us to use any computation in our model by subclass-
ing nn.Module.

In order to subclass nn.Module, at a minimum we need to define a forward function
that takes the inputs to the module and returns the output. This is where we define our
module’s computation. The name forward here is reminiscent of a distant past, when
modules needed to define both the forward and backward passes we met in section
5.5.1. With PyTorch, if we use standard torch operations, autograd will take care of the
backward pass automatically; and indeed, an nn.Module never comes with a backward.

Typically, our computation will use other modules—premade like convolutions or
customized. To include these submodules, we typically define them in the constructor
__init__ and assign them to self for use in the forward function. They will, at the
same time, hold their parameters throughout the lifetime of our module. Note thatyou
need to call super () .__init__ () before you can do that (or PyTorch will remind you).

* Not being able to do this kind of operation inside of nn.Sequential was an explicit design choice by the
PyTorch authors and was left that way for a long time; see the linked comments from @soumith at
https://github.com/pytorch/pytorch/issues/2486. Recently, PyTorch gained an nn.Flatten layer.

® We could have used nn.Flatten starting from PyTorch 1.3.

https://github.com/pytorch/pytorch/issues/2486

208 CHAPTER 8 Using convolutions to generalize

8.3.1 Our network as an nn.Module

Let’s write our network as a submodule. To do so, we instantiate all the nn.Conv2d,
nn.Linear, and so on that we previously passed to nn.Sequential in the constructor,
and then use their instances one after another in forward:

In[26]:
class Net (nn.Module) :
def _ init_ (self):

super () ._ _init_ ()
self.convl = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.actl = nn.Tanh()
self.pooll = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d (16, 8, kernel_size=3, padding=1)
self.act2 = nn.Tanh()
self.pool2 = nn.MaxPool2d(2)
self.fcl = nn.Linear(8 * 8 * 8, 32)
self.act3 = nn.Tanh()
self.fc2 = nn.Linear (32, 2)

def forward(self, x):
out = self.pooll(self.actl(self.convl(x)))
out = self.pool2(self.act2(self.conv2 (out)))
out = out.view(-1, 8 * 8 * 8)

This reshape NET
is what we out = self.act3(self.fcl(out)) OUTPUT (2D)
were missing out = self.fc2 (out)
earlier. return out

The Net class is equivalent to the nn. Sequential model
we built earlier in terms of submodules; but by writing
the forward function explicitly, we can manipulate the
outputof self.pool3 directlyand call viewonitto turn
it into a B x N vector. Note that we leave the batch
dimension as—1 in the call to view, since in principle we
don’t know how many samples will be in the batch.

Here we use a subclass of nn.Module to contain
our entire model. We could also use subclasses to
define new building blocks for more complex net-
works. Picking up on the diagram style in chapter 6,
our network looks like the one shown in figure 8.10.
We are making some ad hoc choices about what infor-
mation to present where.

Recall that the goal of classification networks typi-
cally is to compress information in the sense that we
start with an image with a sizable number of pixels
and compress it into (a vector of probabilities of)
classes. Two things about our architecture deserve
some commentary with respect to this goal.

LINEAR (32D->2D) |

A

TANH |

A

LINEAR (512D->32D) |

A

VIEW (5I2D) |

N BOXBKDS

MAXPOOL (2X2) |

A

TANH |

7N

CONVZD (Bx3, 16C-Y8C) |

N GCXIEXIE

MAXPOOL (2X2) |

A

TANH |

N eex32132

CONVZD (3X3, 3C-Y6C)

INPUT (3¢, 32x32)

Figure 8.10 Our baseline convolu-
tional network architecture

83.2

Subclassing nn.Module 209

First, our goal is reflected by the size of our intermediate values generally
shrinking—this is done by reducing the number of channels in the convolutions, by
reducing the number of pixels through pooling, and by having an output dimension
lower than the input dimension in the linear layers. This is a common trait of
classification networks. However, in many popular architectures like the ResNets we saw
in chapter 2 and discuss more in section 8.5.3, the reduction is achieved by pooling in
the spatial resolution, but the number of channels increases (still resulting in a
reduction in size). It seems that our pattern of fast information reduction works well
with networks of limited depth and small images; but for deeper networks, the decrease
is typically slower.

Second, in one layer, there is not a reduction of output size with regard to input
size: the initial convolution. If we consider a single output pixel as a vector of 32 ele-
ments (the channels), it is a linear transformation of 27 elements (as a convolution of
3 channels x 3 x 3 kernel size)—only a moderate increase. In ResNet, the initial con-
volution generates 64 channels from 147 elements (3 channels x 7 x 7 kernel size).®
So the first layer is exceptional in that it greatly increases the overall dimension (as in
channels times pixels) of the data flowing through it, but the mapping for each out-
put pixel considered in isolation still has approximately as many outputs as inputs.7

How PyTorch keeps track of parameters and submodules

Interestingly, assigning an instance of nn.Module to an attribute in an nn.Module, as
we did in the earlier constructor, automatically registers the module as a submodule.

NOTE The submodules must be top-level attributes, not buried inside 1ist or
dict instances! Otherwise the optimizer will not be able to locate the sub-
modules (and, hence, their parameters). For situations where your model
requires a list or dict of submodules, PyTorch provides nn.ModuleList and
nn.ModuleDict.

We can call arbitrary methods of an nn.Module subclass. For example, for a model
where training is substantially different than its use, say, for prediction, it may make
sense to have a predict method. Be aware that calling such methods will be similar to
calling forward instead of the module itself—they will be ignorant of hooks, and the
JIT does not see the module structure when using them because we are missing the
equivalent of the __call__ bits shown in section 6.2.1.

This allows Net to have access to the parameters of its submodules without further
action by the user:

% The dimensions in the pixel-wise linear mapping defined by the first convolution were emphasized by Jeremy
Howard in his fast.ai course (https://www.fast.ai).

7 Outside of and older than deep learning, projecting into high-dimensional space and then doing conceptu-
ally simpler (than linear) machine learning is commonly known as the kernel trick. The initial increase in the
number of channels could be seen as a somewhat similar phenomenon, but striking a different balance
between the cleverness of the embedding and the simplicity of the model working on the embedding.

https://www.fast.ai

210

8.3.3

CHAPTER 8 Using convolutions to generalize

In[27]:
model = Net()

numel_list = [p.numel () for p in model.parameters ()]
sum (numel_list), numel_list

out[27]:
(18090, [432, 16, 1152, 8, 16384, 32, 64, 21])

What happens here is that the parameters () call delves into all submodules assigned
as attributes in the constructor and recursively calls parameters () on them. No mat-
ter how nested the submodule, any nn.Module can access the list of all child parame-
ters. By accessing their grad attribute, which has been populated by autograd, the
optimizer will know how to change parameters to minimize the loss. We know that
story from chapter 5.

We now know how to implement our own modules—and we will need this a lot for
part 2. Looking back at the implementation of the Net class, and thinking about the
utility of registering submodules in the constructor so that we can access their param-
eters, it appears a bit of a waste that we are also registering submodules that have no
parameters, like nn.Tanh and nn.MaxPool2d. Wouldn’t it be easier to call these
directly in the forward function, just as we called view?

The functional API

It sure would! And that’s why PyTorch has functional counterparts for every nn module.
By “functional” here we mean “having no internal state”’—in other words, “whose out-
put value is solely and fully determined by the value input arguments.” Indeed, torch
.nn. functional provides many functions that work like the modules we find in nn.
But instead of working on the input arguments and stored parameters like the mod-
ule counterparts, they take inputs and parameters as arguments to the function call.
For instance, the functional counterpart of nn.Linear is nn.functional.linear,
which is a function that has signature linear (input, weight, bias=None). The
weight and bias parameters are arguments to the function.

Back to our model, it makes sense to keep using nn modules for nn.Linear and
nn.Conv2d so that Net will be able to manage their Parameters during training. How-
ever, we can safely switch to the functional counterparts of pooling and activation,
since they have no parameters:

In[28]:
import torch.nn.functional as F

class Net (nn.Module) :
def _ init_ (self):
super () .__init__ ()
self.convl = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d (16, 8, kernel_size=3, padding=1)
self.fcl = nn.Linear(8 * 8 * 8, 32)
self.fc2 = nn.Linear (32, 2)

Subclassing nn.Module 211

def forward(self, x):
out = F.max_pool2d(torch.tanh(self.convl(x)), 2)
out = F.max_pool2d(torch.tanh(self.conv2(out)), 2)
out = out.view(-1, 8 * 8 * 8)
out = torch.tanh(self.fcl(out))
out = self.fc2(out)
return out

This is a lot more concise than and fully equivalent to our previous definition of Net
in section 8.3.1. Note that it would still make sense to instantiate modules that require
several parameters for their initialization in the constructor.

TIP While general-purpose scientific functions like tanh still exist in
torch.nn. functional in version 1.0, those entry points are deprecated in
favor of functions in the top-level torch namespace. More niche functions
like max_pool2d will remain in torch.nn. functional.

Thus, the functional way also sheds light on what the nn.Module API is all about: a
Module is a container for state in the forms of Parameters and submodules combined
with the instructions to do a forward.

Whether to use the functional or the modular API is a decision based on style and
taste. When part of a network is so simple that we want to use nn. Sequential, we’re in
the modular realm. When we are writing our own forwards, it may be more natural to
use the functional interface for things that do not need state in the form of parameters.

In chapter 15, we will briefly touch on quantization. Then stateless bits like activa-
tions suddenly become stateful because information about the quantization needs to
be captured. This means if we aim to quantize our model, it might be worthwhile to
stick with the modular API if we go for non-JITed quantization. There is one style mat-
ter that will help you avoid surprises with (originally unforeseen) uses: if you need sev-
eral applications of stateless modules (like nn.HardTanh or nn.ReLU), it is probably a
good idea to have a separate instance for each. Reusing the same module appears to
be clever and will give correct results with our standard Python usage here, but tools
analyzing your model may trip over it.

So now we can make our own nn.Module if we need to, and we also have the func-
tional API for cases when instantiating and then calling an nn.Module is overkill. This
has been the last bit missing to understand how the code organization works in just
about any neural network implemented in PyTorch.

Let’s double-check that our model runs, and then we’ll get to the training loop:

In[29]:
model = Net ()
model (img.unsqueeze (0))

out[29]:
tensor ([[-0.0157, 0.1143]], grad_fn=<AddmmBackward>)

212

8.4

Feeds a batch
through our

CHAPTER 8 Using convolutions to generalize

We got two numbers! Information flows correctly. We might not realize it right now,
but in more complex models, getting the size of the first linear layer right is some-
times a source of frustration. We’ve heard stories of famous practitioners putting in
arbitrary numbers and then relying on error messages from PyTorch to backtrack the
correct sizes for their linear layers. Lame, eh? Nah, it’s all legit!

Training our convnet

We’re now at the point where we can assemble our complete training loop. We already
developed the overall structure in chapter 5, and the training loop looks much like
the one from chapter 6, but here we will revisit it to add some details like some track-
ing for accuracy. After we run our model, we will also have an appetite for a little more
speed, so we will learn how to run our models fast on a GPU. But first let’s look at the
training loop.

Recall that the core of our convnet is two nested loops: an outer one over the
epochs and an inner one of the DataLoader that produces batches from our Dataset.
In each loop, we then have to

Feed the inputs through the model (the forward pass).

Compute the loss (also part of the forward pass).

Zero any old gradients.

Call loss.backward() to compute the gradients of the loss with respect to all
parameters (the backward pass).

Have the optimizer take a step in toward lower loss.

Also, we collect and print some information. So here is our training loop, looking
almost as it does in the previous chapter—but it is good to remember what each thing
is doing:

Uses the datetime module
included with Python Our loop over the epochs,

In[30]: numbered from 1 to n_epochs

import datetime rather than starting at 0

def training_loop (n_epochs, optimizer, model, loss_fn, train_loader):
for epoch in range(l, n_epochs + 1):

loss_train = 0.0 Loops over our dataset in

for imgs, labels in train_loader: the batches the data loader

creates for us
outputs = model (imgs)

model ...
loss = loss_fn(outputs, labels) and computes the loss
After getting rid of o we wish to minimize
the gradients from optimizer.zero_grad()
the last round ...

compute the gradients of all parameters we

loss.backward () : ... performs the backward step. That is, we
want the network to learn.

Updates optimizer.step()

the model

Training our convnet

213

-_—- loss_train += loss.item()
if epoch == 1 or epoch % 10 == 0:
Sums the losses print (' {} Epoch {}, Training loss {}'.format (

we saw over the epoch.
Recall that it is important
to transform the loss to a
Python number with .item(),
to escape the gradients.

datetime.datetime.now(), epoch,
loss_train / len(train_loader)))

Divides by the length of the
training data loader to get the
average loss per batch. This is a
much more intuitive measure than
the sum.

We use the Dataset from chapter 7; wrap it into a DataLoader; instantiate our net-
work, an optimizer, and a loss function as before; and call our training loop.

The substantial changes in our model from the last chapter are that now our
model is a custom subclass of nn.Module and that we’re using convolutions. Let’s run
training for 100 epochs while printing the loss. Depending on your hardware, this
may take 20 minutes or more to finish!

The Dataloader batches up the examples of our cifar2 dataset.
Shuffling randomizes the order of the examples from the dataset.

In([31]:
train_loader = torch.utils.data.DataLoader (cifar2, batch_size=64,

shuffle=True)

Instantiates our network the stochastic gradient
model = Net() # descent optimizer we have
optimizer = optim.SGD(model.parameters(), lr=le-2) # bem1worMngvﬁth
loss_fn = nn.CrossEntropyLoss() #

... and the cross entropy

training_loo .
ining_loop(loss we met in 7.10

Calls the training

n_e;IJOC.:hS = 100,' _ loop we defined
optimizer = optimizer, earlier

model = model,

loss_fn = loss_fn,

train_loader = train_loader,

Out[31]:

2020-01-16 23:07:21.889707 Epoch 1, Training loss 0.5634813266954605
2020-01-16 23:07:37.560610 Epoch 10, Training loss 0.3277610331109375
2020-01-16 23:07:54.966180 Epoch 20, Training loss 0.3035225479086493
2020-01-16 23:08:12.361597 Epoch 30, Training loss 0.28249378549824855
2020-01-16 23:08:29.769820 Epoch 40, Training loss 0.2611226033253275
2020-01-16 23:08:47.185401 Epoch 50, Training loss 0.24105800626574048
2020-01-16 23:09:04.644522 Epoch 60, Training loss 0.21997178820477928
2020-01-16 23:09:22.079625 Epoch 70, Training loss 0.20370126601047578
2020-01-16 23:09:39.593780 Epoch 80, Training loss 0.18939699422401987
2020-01-16 23:09:57.111441 Epoch 90, Training loss 0.17283396527266046
2020-01-16 23:10:14.632351 Epoch 100, Training loss 0.1614033816868712

So now we can train our network. But again, our friend the bird watcher will likely not
be impressed when we tell her that we trained to very low training loss.

214 CHAPTER 8 Using convolutions to generalize

84.1 Measuring accuracy

In order to have a measure that is more interpretable than the loss, we can take a look
at our accuracies on the training and validation datasets. We use the same code as in
chapter 7:

In[32]:
train_loader = torch.utils.data.DataLoader (cifar2, batch_size=64,
shuffle=False)
val_loader = torch.utils.data.DataLoader (cifar2_val, batch_size=64,
shuffle=False)

def validate (model, train_loader, val_loader):
for name, loader in [("train", train_loader), ("val", val_loader)]:
correct = 0

total = 0 We do not want gradients

here, as we will not want to

) update the parameters.
with torch.no_grad() :

for imgs, labels in loader:
outputs = model (imgs)

Counts the number of
examples, so total is

GweSUSthe}ndex _, predicted = torch.max(outputs, dim=1) 'qq@asedbytheba“h
of the highest size
total += labels.shapel[0]
value as output .)
correct += int((predicted == labels).sum()) B —

print ("Accuracy {}: {:.2f}".format(name , correct / total))

validate (model, train_loader, val_loader) Comparing the predicted class that had the

maximum probability and the ground-truth
out[32]: labels, we first get a Boolean array. Taking the
Accuracy train: 0.93 sum gives the number of items in the batch

Accuracy val: 0.89 where the prediction and ground truth agree.

We cast to a Python int—for integer tensors, this is equivalent to using .item(), simi-
lar to what we did in the training loop.

This is quite a lot better than the fully connected model, which achieved only 79%
accuracy. We about halved the number of errors on the validation set. Also, we used
far fewer parameters. This is telling us that the model does a better job of generalizing
its task of recognizing the subject of images from a new sample, through locality and
translation invariance. We could now let it run for more epochs and see what perfor-

mance we could squeeze out.

8.4.2 Saving and loading our model

Since we’re satisfied with our model so far, it would be nice to actually save it, right?
It’s easy to do. Let’s save the model to a file:

In[33]:
torch.save (model.state_dict (), data_path + 'birds_vs_airplanes.pt')

The birds_vs_airplanes.pt file now contains all the parameters of model: that is,
weights and biases for the two convolution modules and the two linear modules. So,

84.3

Training our convnet 215

no structure—just the weights. This means when we deploy the model in production
for our friend, we’ll need to keep the model class handy, create an instance, and then

load the parameters back into it: .
We will have to make sure we don’t change

the definition of Net between saving and

Inl34]: later loading the model state.

loaded_model = Net ()
loaded_model.load_state_dict (torch.load(data_path
+ 'birds_vs_airplanes.pt'))

Out[34]:
<All keys matched successfully>

We have also included a pretrained model in our code repository, saved to ../data/

plch7/birds_vs_airplanes.pt.

Training on the GPU

We have a net and can train it! But it would be good to make it a bit faster. It is no sur-
prise by now that we do so by moving our training onto the GPU. Using the .to
method we saw in chapter 3, we can move the tensors we get from the data loader to
the GPU, after which our computation will automatically take place there. But we also
need to move our parameters to the GPU. Happily, nn.Module implements a . to func-
tion that moves all of its parameters to the GPU (or casts the type when you pass a
dtype argument).

There is a somewhat subtle difference between Module.to and Tensor.to.
Module. to is in place: the module instance is modified. But Tensor. to is out of place
(in some ways computation, just like Tensor.tanh), returning a new tensor. One
implication is that it is good practice to create the Optimizer after moving the param-
eters to the appropriate device.

It is considered good style to move things to the GPU if one is available. A good
pattern is to set the a variable device depending on torch.cuda.is_available:

In[35]:

device = (torch.device('cuda') if torch.cuda.is_available()
else torch.device('cpu'))

print (f"Training on device {device}.")

Then we can amend the training loop by moving the tensors we get from the data
loader to the GPU by using the Tensor.to method. Note that the code is exactly like
our first version at the beginning of this section except for the two lines moving the
inputs to the GPU:

In[36]:
import datetime

def training_loop (n_epochs, optimizer, model, loss_fn, train_loader):
for epoch in range(l, n_epochs + 1):
loss_train = 0.0

216 CHAPTER 8 Using convolutions to generalize

for imgs, labels in train_loader:

imgs = imgs.to(device=device) These two lines that move imgs and
labels = labels.to(device=device) labels to the device we are training
outputs = model (imgs) on are the only difference from our
loss = loss_fn(outputs, labels) previous version

optimizer.zero_grad()
loss.backward()
optimizer.step()

loss_train += loss.item()

if epoch == 1 or epoch % 10 ==
print ('{} Epoch {}, Training loss {}'.format (
datetime.datetime.now(), epoch,

loss_train / len(train_loader)))

The same amendment must be made to the validate function. We can then instanti-
ate our model, move it to device, and run it as before:®

In[37]:
train_loader = torch.utils.data.DatalLoader (cifar2, batch_size=64,
shuffle=True)

model = Net().to(device=device) R e — Moves our model (all

optimizer = optim.SGD(model.parameters(), lr=le-2) pmanuxen)totheGPU.H

loss_fn = nn.CrossEntropyLoss () you forget to move either the

model or the inputs to the

training_loop (GPU, you will get errors about
n_epochs = 100, tensors not being on the same
optimizer = optimizer, device, because the PyTorch
model = model, operators do not support
loss_fn = loss_fn, mixing GPU and CPU inputs.
train_loader = train_loader,

)

Out[37]:

2020-01-16 23:10:35.563216 Epoch 1, Training loss 0.5717791349265227

2020-01-16 23:10:39.730262 Epoch 10, Training loss 0.3285350770137872

2020-01-16 23:10:45.906321 Epoch 20, Training loss 0.29493294959994637

2020-01-16 23:10:52.086905 Epoch 30, Training loss 0.26962305994550134

2020-01-16 23:10:56.551582 Epoch 40, Training loss 0.24709946277794564

2020-01-16 23:11:00.991432 Epoch 50, Training loss 0.22623272664892446

2020-01-16 23:11:05.421524 Epoch 60, Training loss 0.20996672821462534

2020-01-16 23:11:09.951312 Epoch 70, Training loss 0.1934866009719053

2020-01-16 23:11:14.499484 Epoch 80, Training loss 0.1799132404908253

2020-01-16 23:11:19.047609 Epoch 90, Training loss 0.16620008706761774

2020-01-16 23:11:23.590435 Epoch 100, Training loss 0.15667157247662544

8 There is a pin_memory option for the data loader that will cause the data loader to use memory pinned to
the GPU, with the goal of speeding up transfers. Whether we gain something varies, though, so we will not
pursue this here.

8.5

Model design 217

Even for our small network here, we do see a sizable increase in speed. The advantage
of computing on GPUs is more visible for larger models.

There is a slight complication when loading network weights: PyTorch will attempt
to load the weight to the same device it was saved from—that is, weights on the GPU
will be restored to the GPU. As we don’t know whether we want the same device, we
have two options: we could move the network to the CPU before saving it, or move it
back after restoring. It is a bit more concise to instruct PyTorch to override the device
information when loading weights. This is done by passing the map_location keyword
argument to torch.load:

In[39]:
loaded_model = Net () .to(device=device)
loaded_model.load_state_dict (torch.load(data_path
+ 'birds_vs_airplanes.pt',
map_location=device))

Oout[39]:
<All keys matched successfully>

Model design

We built our model as a subclass of nn.Module, the de facto standard for all but the
simplest models. Then we trained it successfully and saw how to use the GPU to train
our models. We’ve reached the point where we can build a feed-forward convolutional
neural network and train it successfully to classify images. The natural question is,
what now? What if we are presented with a more complicated problem? Admittedly,
our birds versus airplanes dataset wasn’t that complicated: the images were very small,
and the object under investigation was centered and took up most of the viewport.

If we moved to, say, ImageNet, we would find larger, more complex images, where
the right answer would depend on multiple visual clues, often hierarchically orga-
nized. For instance, when trying to predict whether a dark brick shape is a remote
control or a cell phone, the network could be looking for something like a screen.

Plus images may not be our sole focus in the real world, where we have tabular
data, sequences, and text. The promise of neural networks is sufficient flexibility to
solve problems on all these kinds of data given the proper architecture (that is, the
interconnection of layers or modules) and the proper loss function.

PyTorch ships with a very comprehensive collection of modules and loss functions
to implement state-of-the-art architectures ranging from feed-forward components to
long short-term memory (LSTM) modules and transformer networks (two very popu-
lar architectures for sequential data). Several models are available through PyTorch
Hub or as part of torchvision and other vertical community efforts.

We’ll see a few more advanced architectures in part 2, where we’ll walk through an
end-to-end problem of analyzing CT scans, but in general, it is beyond the scope of this
book to explore variations on neural network architectures. However, we can build on
the knowledge we’ve accumulated thus far to understand how we can implement

218

8.5.1

CHAPTER 8 Using convolutions to generalize

almost any architecture thanks to the expressivity of PyTorch. The purpose of this
section is precisely to provide conceptual tools that will allow us to read the latest
research paper and start implementing it in PyTorch—or, since authors often release
PyTorch implementations of their papers, to read the implementations without chok-
ing on our coffee.

Adding memory capacity: Width

Given our feed-forward architecture, there are a couple of dimensions we’d likely
want to explore before getting into further complications. The first dimension is the
width of the network: the number of neurons per layer, or channels per convolution.
We can make a model wider very easily in PyTorch. We just specify a larger number of
output channels in the first convolution and increase the subsequent layers accord-
ingly, taking care to change the forward function to reflect the fact that we’ll now
have a longer vector once we switch to fully connected layers:

In[40]:
class NetWidth (nn.Module) :
def _ init_ (self):

super () ._ _init_ ()
self.convl = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d (32, 16, kernel_size=3, padding=1)
self.fcl = nn.Linear(16 * 8 * 8, 32)
self.fc2 = nn.Linear (32, 2)

def forward(self, x):
out = F.max_pool2d(torch.tanh(self.convl(x)), 2)
out = F.max_pool2d(torch.tanh(self.conv2(out)), 2)
out = out.view(-1, 16 * 8 * 8)
out = torch.tanh(self.fcl (out))
out = self.fc2(out)
return out

If we want to avoid hardcoding numbers in the definition of the model, we can easily
pass a parameter to ¢nit and parameterize the width, taking care to also parameterize
the call to view in the forward function:

In[42]:
class NetWidth (nn.Module) :
def _ init_ (self, n_chansl=32):
super () .__init__ ()
self.n_chansl = n_chansl
self.convl = nn.Conv2d(3, n_chansl, kernel_size=3, padding=1)

self.conv2 = nn.Conv2d(n_chansl, n_chansl // 2, kernel_size=3,
padding=1)

self.fcl = nn.Linear(8 * 8 * n_chansl // 2, 32)

self.fc2 = nn.Linear (32, 2)

def forward(self, x):
out = F.max_pool2d(torch.tanh(self.convl(x)), 2)
out = F.max_pool2d(torch.tanh(self.conv2(out)), 2)

8.5.2

Model design 219

out = out.view(-1, 8 * 8 * self.n_chansl // 2)
out = torch.tanh(self.fcl(out))

out = self.fc2(out)

return out

The numbers specifying channels and features for each layer are directly related to
the number of parameters in a model; all other things being equal, they increase the
capacity of the model. As we did previously, we can look at how many parameters our
model has now:

In[44]:
sum(p.numel () for p in model.parameters())

out[44]:
38386

The greater the capacity, the more variability in the inputs the model will be able to
manage; but at the same time, the more likely overfitting will be, since the model can
use a greater number of parameters to memorize unessential aspects of the input. We
already went into ways to combat overfitting, the best being increasing the sample size
or, in the absence of new data, augmenting existing data through artificial modifica-
tions of the same data.

There are a few more tricks we can play at the model level (without acting on the
data) to control overfitting. Let’s review the most common ones.

Helping our model to converge and generalize: Regularization

Training a model involves two critical steps: optimization, when we need the loss to
decrease on the training set; and generalization, when the model has to work not only
on the training set but also on data it has not seen before, like the validation set. The
mathematical tools aimed at easing these two steps are sometimes subsumed under
the label regularization.

KEEPING THE PARAMETERS IN CHECK: WEIGHT PENALTIES

The first way to stabilize generalization is to add a regularization term to the loss. This
term is crafted so that the weights of the model tend to be small on their own, limiting
how much training makes them grow. In other words, it is a penalty on larger weight
values. This makes the loss have a smoother topography, and there’s relatively less to
gain from fitting individual samples.

The most popular regularization terms of this kind are L2 regularization, which is
the sum of squares of all weights in the model, and L1 regularization, which is the sum
of the absolute values of all weights in the model.’ Both of them are scaled by a
(small) factor, which is a hyperparameter we set prior to training.

9 We’ll focus on L2 regularization here. L1 regularization—popularized in the more general statistics literature
by its use in Lasso—has the attractive property of resulting in sparse trained weights.

220

CHAPTER 8 Using convolutions to generalize

L2 regularization is also referred to as weight decay. The reason for this name is that,
thinking about SGD and backpropagation, the negative gradient of the L2 regulariza-
tion term with respect to a parameter w_i is - 2 * lambda * w_i, where lambda is the
aforementioned hyperparameter, simply named weight decayin PyTorch. So, adding L.2
regularization to the loss function is equivalent to decreasing each weight by an
amount proportional to its current value during the optimization step (hence, the
name weight decay). Note that weight decay applies to all parameters of the network,
such as biases.

In PyTorch, we could implement regularization pretty easily by adding a term to
the loss. After computing the loss, whatever the loss function is, we can iterate the
parameters of the model, sum their respective square (for L2) or abs (for L1), and
backpropagate:

In[45]:
def training_loop_l2reg(n_epochs, optimizer, model, loss_fn,
train_loader) :
for epoch in range(l, n_epochs + 1):
loss_train = 0.0
for imgs, labels in train_loader:
imgs = imgs.to(device=device)
labels = labels.to(device=device)
outputs = model (imgs)
loss = loss_fn(outputs, labels)

12_lambda = 0.001 Replaces pow(2.0)

12_norm = sum(p.pow(2.0) .sum() with abs() for L1
for p in model.parameters()) regularization
loss = loss + 12_lambda * 12_norm

optimizer.zero_grad()
loss.backward ()

optimizer.step()

loss_train += loss.item()

if epoch == 1 or epoch % 10 ==
print('{} Epoch {}, Training loss {}'.format(
datetime.datetime.now(), epoch,

loss_train / len(train_loader)))

However, the SGD optimizer in PyTorch already has a weight_decay parameter that
corresponds to 2 * lambda, and it directly performs weight decay during the update
as described previously. It is fully equivalent to adding the L2 norm of weights to the
loss, without the need for accumulating terms in the loss and involving autograd.

NOT RELYING TOO MUCH ON A SINGLE INPUT: DROPOUT

An effective strategy for combating overfitting was originally proposed in 2014 by Nit-
ish Srivastava and coauthors from Geoff Hinton’s group in Toronto, in a paper aptly
entitled “Dropout: a Simple Way to Prevent Neural Networks from Overfitting”
(http://mng.bz/nPMa). Sounds like pretty much exactly what we’re looking for,

http://mng.bz/nPMa

Model design 221

right? The idea behind dropout is indeed simple: zero out a random fraction of out-
puts from neurons across the network, where the randomization happens at each
training iteration.

This procedure effectively generates slightly different models with different neu-
ron topologies at each iteration, giving neurons in the model less chance to coordi-
nate in the memorization process that happens during overfitting. An alternative
point of view is that dropout perturbs the features being generated by the model,
exerting an effect that is close to augmentation, but this time throughout the network.

In PyTorch, we can implement dropout in a model by adding an nn.Dropout mod-
ule between the nonlinear activation function and the linear or convolutional module
of the subsequent layer. As an argument, we need to specify the probability with which
inputs will be zeroed out. In case of convolutions, we’ll use the specialized nn.Drop-
out2d or nn.Dropout3d, which zero out entire channels of the input:

In[47]:
class NetDropout (nn.Module) :
def _ _init_ (self, n_chansl=32):
super () .__init_ ()
self.n _chansl = n_chansl
self.convl = nn.Conv2d(3, n_chansl, kernel_size=3, padding=1)
self.convl_dropout = nn.Dropout2d(p=0.4)
self.conv2 = nn.Conv2d(n_chansl, n_chansl // 2, kernel_size=3,
padding=1)

self.conv2_dropout = nn.Dropout2d(p=0.4)
self.fcl = nn.Linear(8 * 8 * n_chansl // 2, 32)
self.fc2 = nn.Linear (32, 2)

def forward(self, x):

out = F.max_pool2d(torch.tanh(self.convl(x)), 2)
out = self.convl_dropout (out)
out = F.max_pool2d(torch.tanh(self.conv2(out)), 2)

out = self.conv2_dropout (out)

out = out.view(-1, 8 * 8 * self.n_chansl // 2)
out = torch.tanh(self.fcl(out))

out = self.fc2(out)

return out

Note that dropout is normally active during training, while during the evaluation of a
trained model in production, dropout is bypassed or, equivalently, assigned a proba-
bility equal to zero. This is controlled through the train property of the Dropout
module. Recall that PyTorch lets us switch between the two modalities by calling

model.train()
or

model.eval ()

222

CHAPTER 8 Using convolutions to generalize

on any nn.Model subclass. The call will be automatically replicated on the submodules
so that if Dropout is among them, it will behave accordingly in subsequent forward
and backward passes.

KEEPING ACTIVATIONS IN CHECK: BATCH NORMALIZATION

Dropout was all the rage when, in 2015, another seminal paper was published by
Sergey loffe and Christian Szegedy from Google, entitled “Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift”
(https://arxiv.org/abs/1502.03167). The paper described a technique that had mul-
tiple beneficial effects on training: allowing us to increase the learning rate and make
training less dependent on initialization and act as a regularizer, thus representing an
alternative to dropout.

The main idea behind batch normalization is to rescale the inputs to the activa-
tions of the network so that minibatches have a certain desirable distribution. Recall-
ing the mechanics of learning and the role of nonlinear activation functions, this
helps avoid the inputs to activation functions being too far into the saturated portion
of the function, thereby killing gradients and slowing training.

In practical terms, batch normalization shifts and scales an intermediate input
using the mean and standard deviation collected at that intermediate location over
the samples of the minibatch. The regularization effect is a result of the fact that an
individual sample and its downstream activations are always seen by the model as
shifted and scaled, depending on the statistics across the randomly extracted mini-
batch. This is in itself a form of principled augmentation. The authors of the paper
suggest that using batch normalization eliminates or at least alleviates the need
for dropout.

Batch normalization in PyTorch is provided through the nn.BatchNormlD,
nn.BatchNorm2d, and nn.BatchNorm3d modules, depending on the dimensionality of
the input. Since the aim for batch normalization is to rescale the inputs of the activa-
tions, the natural location is after the linear transformation (convolution, in this case)
and the activation, as shown here:

In[49]:
class NetBatchNorm(nn.Module) :
def __init__ (self, n_chansl=32):
super()._ _init_ ()
self.n_chansl = n_chansl
self.convl = nn.Conv2d(3, n_chansl, kernel_size=3, padding=1)
self.convl_batchnorm = nn.BatchNorm2d (num_features=n_chansl)
self.conv2 = nn.Conv2d(n_chansl, n_chansl // 2, kernel_size=3,
padding=1)

self.conv2_batchnorm = nn.BatchNorm2d (num_features=n_chansl // 2)
self.fcl = nn.Linear(8 * 8 * n_chansl // 2, 32)
self.fc2 = nn.Linear (32, 2)

def forward(self, x):
out = self.convl_batchnorm(self.convl (x))
out = F.max_pool2d(torch.tanh(out), 2)

https://arxiv.org/abs/1502.03167

8.5.3

Model design 223

out = self.conv2_batchnorm(self.conv2 (out))
out = F.max_pool2d(torch.tanh(out), 2)

out = out.view(-1, 8 * 8 * gelf.n_chansl // 2)
out = torch.tanh(self.fcl(out))

out = self.fc2(out)

return out

Just as for dropout, batch normalization needs to behave differently during training
and inference. In fact, at inference time, we want to avoid having the output for a spe-
cific input depend on the statistics of the other inputs we’re presenting to the model.
As such, we need a way to still normalize, but this time fixing the normalization
parameters once and for all.

As minibatches are processed, in addition to estimating the mean and standard
deviation for the current minibatch, PyTorch also updates the running estimates for
mean and standard deviation that are representative of the whole dataset, as an
approximation. This way, when the user specifies

model.eval ()

and the model contains a batch normalization module, the running estimates are fro-
zen and used for normalization. To unfreeze running estimates and return to using
the minibatch statistics, we call model.train (), just as we did for dropout.

Going deeper to learn more complex structures: Depth

Earlier, we talked about width as the first dimension to act on in order to make a
model larger and, in a way, more capable. The second fundamental dimension is obvi-
ously depth. Since this is a deep learning book, depth is something we’re supposedly
into. After all, deeper models are always better than shallow ones, aren’t they? Well, it
depends. With depth, the complexity of the function the network is able to approxi-
mate generally increases. In regard to computer vision, a shallower network could
identify a person’s shape in a photo, whereas a deeper network could identify the per-
son, the face on their top half, and the mouth within the face. Depth allows a model
to deal with hierarchical information when we need to understand the context in
order to say something about some input.

There’s another way to think about depth: increasing depth is related to increasing
the length of the sequence of operations that the network will be able to perform
when processing input. This view—of a deep network that performs sequential opera-
tions to carry out a task—is likely fascinating to software developers who are used to
thinking about algorithms as sequences of operations like “find the person’s boundar-
ies, look for the head on top of the boundaries, look for the mouth within the head.”

SKIP CONNECTIONS

Depth comes with some additional challenges, which prevented deep learning models
from reaching 20 or more layers until late 2015. Adding depth to a model generally
makes training harder to converge. Let’s recall backpropagation and think about it in

224

CHAPTER 8 Using convolutions to generalize

the context of a very deep network. The derivatives of the loss function with respect to
the parameters, especially those in early layers, need to be multiplied by a lot of other
numbers originating from the chain of derivative operations between the loss and the

parameter. Those numbers being multiplied could be small, generating ever-smaller

numbers, or large, swallowing smaller numbers due to floating-point approximation.

The bottom line is that a long chain of multiplications will tend to make the contribu-
tion of the parameter to the gradient vanish, leading to ineffective training of that layer
since that parameter and others like it won’t be properly updated.

In December 2015, Kaiming He and
coauthors presented 7esidual networks
(ResNets), an architecture that uses a
simple trick to allow very deep networks
to be successfully trained (https://
arxiv.org/abs/1512.03385). That work
opened the door to networks ranging
from tens of layers to 100 layersin depth,
surpassing the then state of the art in
computer vision benchmark problems.
We encountered residual networks
when we were playing with pretrained
models in chapter 2. The trick we men-
tioned is the following: using a skip con-
nection to short-circuit blocks of layers, as
shown in figure 8.11.

A skip connection is nothing but
the addition of the input to the output
of a block of layers. This is exactly how
it is done in PyTorch. Let’s add one
layer to our simple convolutional
model, and let’s use RelLU as the acti-
vation for a change. The vanilla mod-
ule with an extra layer looks like this:

In([51]:
class NetDepth (nn.Module) :
def _ init_ (self, n_chansl=32):
super () ._ _init_ ()
self.n_chansl = n_chansl

NETDEPTH / NETRES
OUTPULT (2D)

| LneAR (320->2D) |
/b RELL
| LNeAR ((N/2%16)D->32D) |

| VIEW ((N/2¥16)D) |

N/z2exuxe A
| MAXPOOL (242) |
S =T
| QONVZD(EXB'N/ZQ->N/2631)zxnanmN
N/2ex8k® Do -
MAXPOOL (2x2) |
¢ RELL

| convzp(3x3, Ne->W/2¢) |
NCXIOXI@ A
MAXPOOL (2x2) |
Nex3zx3z A ReLo
CONVZD (343, 3e-NC) |

T

INPUT (3¢, 32x32)

Figure 8.11 The architecture of our network with
three convolutional layers. The skip connection is
what differentiates NetRes from NetDepth.

self.convl = nn.Conv2d(3, n_chansl, kernel_size=3, padding=1)

self.conv2 = nn.Conv2d(n_chansl, n_chansl // 2, kernel_size=3,
padding=1)
self.conv3d = nn.Conv2d(n_chansl // 2, n_chansl // 2,

kernel_size=3, padding=1)
self.fcl = nn.Linear(4 * 4 * n_chansl // 2, 32)

self.fc2 = nn.Linear (32, 2)

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

Model design 225

def forward(self, x):

out = F.max_pool2d(torch.relu(self.convl(x)), 2)
out = F.max_pool2d(torch.relu(self.conv2(out)), 2)
out = F.max_pool2d(torch.relu(self.conv3(out)), 2)
out = out.view(-1, 4 * 4 * gelf.n_chansl // 2)
out torch.relu(self.fcl(out))
out = self.fc2(out)
return out

(
(

Adding a skip connection a la ResNet to this model amounts to adding the output of
the first layer in the forward function to the input of the third layer:

In[53]:
class NetRes (nn.Module) :
def _ _init_ (self, n_chansl1=32):
super().__init_ ()
self.n _chansl = n_chansl
self.convl = nn.Conv2d(3, n_chansl, kernel_size=3, padding=1)

self.conv2 = nn.Conv2d(n_chansl, n_chansl // 2, kernel_size=3,
padding=1)
self.conv3 = nn.Conv2d(n_chansl // 2, n_chansl // 2,

kernel_size=3, padding=1)
self.fcl = nn.Linear(4 * 4 * n_chansl // 2, 32)
self.fc2 = nn.Linear (32, 2)

def forward(self, x):

out = F.max_pool2d(torch.relu(self.convl(x)), 2)

out = F.max_pool2d(torch.relu(self.conv2(out)), 2)

outl = out

out = F.max_pool2d(torch.relu(self.conv3(out)) + outl, 2)
out = out.view(-1, 4 * 4 * gself.n_chansl // 2)

out = torch.relu(self.fcl(out))

out = self.fc2(out)
return out

In other words, we’re using the output of the first activations as inputs to the last, in
addition to the standard feed-forward path. This is also referred to as identity mapping.
So, how does this alleviate the issues with vanishing gradients we were mentioning
earlier?

Thinking about backpropagation, we can appreciate that a skip connection, or a
sequence of skip connections in a deep network, creates a direct path from the deeper
parameters to the loss. This makes their contribution to the gradient of the loss more
direct, as partial derivatives of the loss with respect to those parameters have a chance
not to be multiplied by a long chain of other operations.

It has been observed that skip connections have a beneficial effect on convergence
especially in the initial phases of training. Also, the loss landscape of deep residual
networks is a lot smoother than feed-forward networks of the same depth and width.

It is worth noting that skip connections were not new to the world when ResNets
came along. Highway networks and U-Net made use of skip connections of one form

226

CHAPTER 8 Using convolutions to generalize

or another. However, the way ResNets used skip connections enabled models of
depths greater than 100 to be amenable to training.

Since the advent of ResNets, other architectures have taken skip connections to
the next level. One in particular, DenseNet, proposed to connect each layer with sev-
eral other layers downstream through skip connections, achieving state-of-the-art
results with fewer parameters. By now, we know how to implement something like
DenseNets: just arithmetically add earlier intermediate outputs to downstream inter-
mediate outputs.

BUILDING VERY DEEP MODELS IN PYTORCH

We talked about exceeding 100 layers in a convolutional neural network. How can we
build that network in PyTorch without losing our minds in the process? The standard
strategy is to define a building block, such as a (Conv2d, ReLU, Conv2d) + skip
connection block, and then build the network dynamically in a for loop. Let’s see it
done in practice. We will create the network depicted in figure 8.12.

RESBLOCK NETRESDEEP
OUTPUT (2D, N CHANNELS) OUTPUT (2D)
| LiNeAR (32D->2D) |
/b RELL
| RELU | [LineAR ((N*e4)D->32D) |
A)
| BATCHNORMZD (NQ) | | VEw (N¥GHD) |
A NCXBKS N
| convzp(zxz Ne->Ne) | [maxeooL (2x2) |
N NCXIOXIG A
INPUT (2D, N CHANNELS) | RESBLOCK(NC) |
A
- 00
NCXIOKIE /I\ RESBLOCKS

RESBLOCK(NC) |
NCXIGXIG A
| maxpooL (2x2) |
Nex32xzz A Reto
| convap (3x3, 3¢->Ne) |

/[\

INPUT (3¢, 32x32)

Figure 8.12 Our deep architecture with residual connections. On the left, we define a simplistic
residual block. We use it as a building block in our network, as shown on the right.

We first create a module subclass whose sole job is to provide the computation for one
block—that is, one group of convolutions, activation, and skip connection:

Model design 227

Inl55]: The BatchNorm layer would
class ResBlock(nn.Module) : cancel the effect of bias, so
def __init_ (self, n_chans): it is customarily left out.
super (ResBlock, self)._ _init_ ()
self.conv = nn.Conv2d(n_chans, n_chans, kernel_size=3,
padding=1, bias=False)
self.batch_norm = nn.BatchNorm2d (num_features=n_chans)
torch.nn.init.kaiming_normal_(self.conv.weight,
nonlinearity='relu') <G
torch.nn.init.constant_(self.batch_norm.weight, 0.5)
torch.nn.init.zeros_(self.batch_norm.bias)
Uses custom initializations
def forward(self, x): . kaiming_normal_ initializes with
out = self.conv(x) normal random elements with standard
out = self.batch_norm(out) deviation as computed in the ResNet paper.
out = torch.relu(out) The batch norm is initialized to produce output
return out + x distributions that initially have 0 mean and 0.5 variance.

Since we’re planning to generate a deep model, we are including batch normalization
in the block, since this will help prevent gradients from vanishing during training.
We’d now like to generate a 100-block network. Does this mean we have to prepare for
some serious cutting and pasting? Not at all; we already have the ingredients for imag-
ining how this could look like.

First, in inil, we create nn.Sequential containing a list of ResBlock instances.
nn.Sequential will ensure that the output of one block is used as input to the next. It
will also ensure that all the parameters in the block are visible to Net. Then, in forward,
we just call the sequential to traverse the 100 blocks and generate the output:

In[56]:
class NetResDeep (nn.Module) :
def __init_ (self, n_chansl=32, n_blocks=10):
super () .__init__ ()
self.n_chansl = n_chansl
self.convl = nn.Conv2d (3, n_chansl, kernel_size=3, padding=1)
self.resblocks = nn.Sequential (
*(n_blocks * [ResBlock(n_chans=n_chansl)]))

self.fcl = nn.Linear(8 * 8 * n_chansl, 32)
self.fc2 = nn.Linear (32, 2)

def forward(self, x):
out F.max_pool2d(torch.relu(self.convl(x)), 2)
out = self.resblocks (out)
out = F.max_pool2d(out, 2)
out = out.view(-1, 8 * 8 * self.n_chansl)
out = torch.relu(self.fcl(out))
out self.fc2 (out)
return out

In the implementation, we parameterize the actual number of layers, which is import-
ant for experimentation and reuse. Also, needless to say, backpropagation will work as
expected. Unsurprisingly, the network is quite a bit slower to converge. It is also more

228

8.5.4

CHAPTER 8 Using convolutions to generalize

fragile in convergence. This is why we used more-detailed initializations and trained
our NetRes with a learning rate of 3e — 3 instead of the le — 2 we used for the other
networks. We trained none of the networks to convergence, but we would not have
gotten anywhere without these tweaks.

All this shouldn’t encourage us to seek depth on a dataset of 32 x 32 images, but it
clearly demonstrates how this can be achieved on more challenging datasets like Image-
Net. It also provides the key elements for understanding existing implementations for
models like ResNet, for instance, in torchvision.

INITIALIZATION

Let’s briefly comment about the earlier initialization. Initialization is one of the
important tricks in training neural networks. Unfortunately, for historical reasons,
PyTorch has default weight initializations that are not ideal. People are looking at fix-
ing the situation; if progress is made, it can be tracked on GitHub (https://
github.com/pytorch/pytorch/issues/18182). In the meantime, we need to fix the
weight initialization ourselves. We found that our model did not converge and looked
at what people commonly choose as initialization (a smaller variance in weights; and
zero mean and unit variance outputs for batch norm), and then we halved the output
variance in the batch norm when the network would not converge.

Weight initialization could fill an entire chapter on its own, but we think that
would be excessive. In chapter 11, we’ll bump into initialization again and use what
arguably could be PyTorch defaults without much explanation. Once you've pro-
gressed to the point where the details of weight initialization are of specific interest to
you—probably not before finishing this book—you might revisit this topic.'

Comparing the designs from this section

We summarize the effect of each of our design modifications in isolation in figure
8.13. We should not overinterpret any of the specific numbers—our problem setup
and experiments are simplistic, and repeating the experiment with different random
seeds will probably generate variation at least as large as the differences in validation
accuracy. For this demonstration, we left all other things equal, from learning rate to
number of epochs to train; in practice, we would try to get the best results by varying
those. Also, we would likely want to combine some of the additional design elements.

But a qualitative observation may be in order: as we saw in section 5.5.3, when dis-
cussing validatioin and overfitting, The weight decay and dropout regularizations,
which have a more rigorous statistical estimation interpretation as regularization than
batch norm, have a much narrower gap between the two accuracies. Batch norm, which

19 The seminal paper on the topic is by X. Glorot and Y. Bengio: “Understanding the Difficulty of Training Deep
Feedforward Neural Networks” (2010), which introduces PyTorch’s Xavier initializations (http://
mng.bz/vxz7). The ResNet paper we mentioned expands on the topic, too, giving us the Kaiming initializa-
tions used earlier. More recently, H. Zhang et al. have tweaked initialization to the point that they do not need
batch norm in their experiments with very deep residual networks (https://arxiv.org/abs/1901.09321).

https://github.com/pytorch/pytorch/issues/18182
https://github.com/pytorch/pytorch/issues/18182
https://github.com/pytorch/pytorch/issues/18182
http://mng.bz/vxz7
http://mng.bz/vxz7
http://mng.bz/vxz7
https://arxiv.org/abs/1901.09321

8.5.5

8.6

Conclusion 229

.00

0.95

ACCURACY
o o
s 3
1]

O
'S
(]
1

Figure 8.13 The modified networks all perform similarly.

serves more as a convergence helper, lets us train the network to nearly 100% training
accuracy, so we interpret the first two as regularization.

It’s already outdated

The curse and blessing of a deep learning practitioner is that neural network architec-
tures evolve at a very rapid pace. This is not to say that what we’ve seen in this chapter
is necessarily old school, but a thorough illustration of the latest and greatest architec-
tures is a matter for another book (and they would cease to be the latest and the great-
est pretty quickly anyway). The take-home message is that we should make every effort
to proficiently translate the math behind a paper into actual PyTorch code, or at least
understand the code that others have written with the same intention. In the last few
chapters, you have hopefully gathered quite a few of the fundamental skills to trans-
late ideas into implemented models in PyTorch.

Conclusion

After quite a lot of work, we now have a model that our fictional friend Jane can use to
filter images for her blog. All we have to do is take an incoming image, crop and resize
it to 32 x 32, and see what the model has to say about it. Admittedly, we have solved
only part of the problem, but it was a journey in itself.

We have solved just part of the problem because there are a few interesting
unknowns we would still have to face. One is picking out a bird or airplane from a

230

8.7

CHAPTER 8 Using convolutions to generalize

larger image. Creating bounding boxes around objects in an image is something a
model like ours can’t do.

Another hurdle concerns what happens when Fred the cat walks in front of the
camera. Our model will not refrain from giving its opinion about how bird-like the cat
is! It will happily output “airplane” or “bird,” perhaps with 0.99 probability. This issue
of being very confident about samples that are far from the training distribution is
called overgeneralization. It’s one of the main problems when we take a (presumably
good) model to production in those cases where we can’t really trust the input (which,
sadly, is the majority of real-world cases).

In this chapter, we have built reasonable, working models in PyTorch that can
learn from images. We did it in a way that helped us build our